
Semantic Parsing

Natalie Parde

UIC CS 421

What is semantic parsing?

� The process of extracting semantic structure or meaning from natural language input

� What are the semantic dependencies present in the language sample?

� How do elements in the language sample relate to one another logically?

� What semantic roles are filled in the language sample?

Natalie Parde - UIC CS 421 2

Most popular
semantic
parsing task:
dependency
parsing

� Automatically determining directed
grammatical and semantic relationships
between words

� Semantic: Focused on meaning

� This information is useful for many NLP
applications, including:

� Coreference resolution

� Question answering

� Information extraction

Natalie Parde - UIC CS 421 3

How are dependency grammars different from CFGs?

� CFGs generate constituent-based representations

� Noun phrases, verb phrases, etc.

� These tell us about the syntactic structure

� Dependency grammars define sentence structure in terms of the semantic relationships
between individual words

� Nominal subject, direct object, etc.

� For both, labels are still drawn from a fixed inventory of grammatical relations

Natalie Parde - UIC CS 421 4

Dependency
grammars are
especially
helpful for
interpreting
morphologically
rich languages
with a
relatively free
word order.

Natalie Parde - UIC CS 421 5

Morphologically rich: Grammatical
relationships are indicated by changes to
words, rather than sentence position

Free word order: Words can be moved
around in a sentence but the overall
meaning will remain the same (less
reliance on syntax)

Typically, languages that are
morphologically richer have less strict
syntactic rules

This
Week’s
Topics

Natalie Parde - UIC CS 421 6

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

This
Week’s
Topics

Natalie Parde - UIC CS 421 7

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

Natalie Parde - UIC CS 421 8

Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

DallasNatalie Parde - UIC CS 421 9

Dependency Relations

• Heads are linked to the words that are immediately dependent on them
• Relation types describe the dependent’s role with respect to its head

• Subject
• Direct object
• Indirect object

Natalie Parde - UIC CS 421 10

Dependency Relations

• Relation types tend to correlate with sentence position and constituent type in
English, but there is not an explicit connection between these elements

• In languages with relatively free word order, the information encoded in these
relation types often cannot be estimated from constituency trees

Natalie Parde - UIC CS 421
11

Just like with
CFGs, there
are a variety
of taxonomies
that can be
used to label
dependencies
between
words.12

N
atalie P

arde - U
IC

 C
S

 421

• A couple of the most popular dependency
treebanks and tagsets include:

• Stanford dependencies
• https://downloads.cs.stanford.edu/nlp/so

ftware/dependencies_manual.pdf
• Universal dependencies

• https://universaldependencies.org/
• Most popular tagset recently!
• Dependencies can be categorized as:

• Clausal Relations: Describe
syntactic roles that say something
about the predicate

• Modifier Relations: Describe the
ways that words can modify their
heads

https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://universaldependencies.org/

Clausal Relations

I prefer the purple plant

nsubj

root
dobj

det

amod

Natalie Parde - UIC CS 421 13

Modifier Relations

Natalie Parde - UIC CS 421

I prefer the purple plant

nsubj

root
dobj

det

amod

14

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

Natalie Parde - UIC CS 421 15

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote UIC a dissertation.
iobj(wrote, UIC)

Natalie Parde - UIC CS 421 16

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

Natalie wrote a dissertation for UIC.
obl(wrote, UIC)

UIC, read my dissertation!
vocative(read, UIC)

There is nothing but praise for the dissertation.
expl(nothing, there)

You must not eat it, the dissertation.
dislocated(eat, dissertation)

Natalie Parde - UIC CS 421 17

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

The purpose of this dissertation is to determine the best
homework strategy.
nmod(purpose, dissertation)

My school, UIC, is in Chicago.
appos(school, UIC)

UIC has 34,000 students.
nummod(students, 34,000)

Natalie Parde - UIC CS 421 18

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

What she said about starting the project
makes sense.
csubj(makes, said)

She said you should start it now.
ccomp(said, start)

I consider it already done.
xcomp(consider, done)

Natalie Parde - UIC CS 421 19

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

He was upset when she read her
dissertation to him.
advcl(upset, read)

Natalie Parde - UIC CS 421 20

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

There is a document discussing the
assignment.
acl(document, discussing)

Natalie Parde - UIC CS 421 21

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

UIC quickly emailed the students about the
day off.
advmod(emailed, quickly)

She said, “Well, let’s schedule a meeting.”
discourse(schedule, well)

Natalie Parde - UIC CS 421 22

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

He read the extensive syllabus.
amod(syllabus, extensive)

Natalie Parde - UIC CS 421 23

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

UIC had closed the campus for the break.
aux(closed, had)

It was good to have some time off.
cop(good, was)

They knew that this would refresh everyone for the spring.
mark(refresh, that)

Natalie Parde - UIC CS 421 24

https://universaldependencies.org/u/dep/index.html

Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments
of Clausal
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Dependents of
Clausal
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s

w
.r.

t.
he

ad

Structural categories of dependent

That was the goal.
det(goal, the)

Everyone went on vacation after that.
case(that, after)

Natalie Parde - UIC CS 421 25

A word that accompanies a noun to
reflect some conceptual classification
of the noun (not used in English)

https://universaldependencies.org/u/dep/index.html

Dependency
Formalisms

Natalie Parde - UIC CS 421 26

Dependency structures are directed graphs
• G = (V, A)
• Vertices (V) correspond to the words in a sentence

• May also include punctuation
• In morphologically rich languages, may include stems

and affixes
• Arcs (A) are ordered pairs of vertices that capture the

grammatical relationships between those words

In general, dependency structures:
• Must be connected
• Must have a designated root node with no incoming arcs
• Must be acyclic

Additional Notes
• All vertices except the root node have exactly one

incoming arc
• There is a unique path from the root node to each vertex

This
Week’s
Topics

Natalie Parde - UIC CS 421 27

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Types of Dependency Parsers

Transition-based
• Build a single tree in a beginning-to-end sweep over the input sentenceTransition

Graph-based
• Search through the space of possible trees for a given sentence, and try

to find the tree that maximizes some score
Graph

Natalie Parde - UIC CS 421 28

Transition-based Dependency
Parsing

• Earliest transition-based approach: shift-
reduce parsing

• Input tokens are successively shifted
onto a stack

• The two top elements of the stack are
matched against a set of possible
relations provided by some
knowledge source

• When a match is found, a head-
dependent relation between the
matched elements is asserted

• Goal is to find a final parse that accounts
for all words

Oracle

Stack Input BufferDependency Relations

Natalie Parde - UIC CS 421
29

Transition-
based
Parsing

• We can define transition operators to
guide the parser’s decisions

• Transition operators work by producing
new configurations:

• Stack
• Input buffer of words
• Set of relations representing a

dependency tree

Natalie Parde - UIC CS 421
30

Transition-
based
Parsing

Natalie Parde - UIC CS 421

• Stack contains the ROOT node
• Input buffer is initialized with all

words in the sentence, in order
• Empty set of relations represents

the parse

Initial configuration:

• Stack should be empty (except
ROOT)

• Input buffer should be empty
• Set of relations represents the

parse

Final configuration:

31

Operators

• The operators used in transition-based parsing then perform one of
the following tasks:

• Assign the current word as the head of some other word that
has already been seen

• Assign some other word that has already been seen as the
head of the current word

• Do nothing with the current word

Natalie Parde - UIC CS 421 32

Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation between the

word at the top of the stack and the word directly beneath
it (the second word), and removes the second word from
the stack

• Cannot be applied when ROOT is the second element
in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation between the

second word and the word at the top of the stack, and
removes the word at the top of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the input buffer

and pushes it onto the stack

Natalie Parde - UIC CS 421 33

Arc Standard
Approach to
Transition-
based Parsing

� These operators implement the arc standard
approach to transition-based parsing

� Notable characteristics:

� Transition operators only assert relations
between elements at the top of the stack

� Once an element has been assigned its
head, it is removed from the stack
�Not available for further processing!

� The arc standard approach is a greedy
algorithm

� Benefits:
� Reasonably effective

� Simple to implement

Natalie Parde - UIC CS 421 34

Formal Algorithm: Arc Standard
Approach
state ← {[root], [words], []}

while state not final:

 # Choose which transition operator to apply

 transition ← oracle(state)

 # Apply the operator and create a new state

 state ← apply(transition, state)

Natalie Parde - UIC CS 421 35

Process ends when:
• All words in the sentence have been consumed
• The ROOT node is the only element remaining on the stack

Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations

Natalie Parde - UIC CS 421 36

Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input
buffer to the stack

Natalie Parde - UIC CS 421 37

Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input
buffer to the stack

Natalie Parde - UIC CS 421 38

Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to
the set of relations

Natalie Parde - UIC CS 421 39

Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input
buffer to the stack

Natalie Parde - UIC CS 421 40

Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input
buffer to the stack

Natalie Parde - UIC CS 421 41

Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift,
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input
buffer to the stack

Natalie Parde - UIC CS 421 42

Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove morning from the
stack

Add relation (flight →
morning) to the set of
relations

Natalie Parde - UIC CS 421 43

Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc,
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to
the set of relations

Natalie Parde - UIC CS 421 44

Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc,
LeftArc

Oracle selects RightArc

Remove flight from the
stack

Add relation (book → flight)
to the set of relations

Natalie Parde - UIC CS 421 45

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the
stack

Add relation (root → book)
to the set of relations

Natalie Parde - UIC CS 421 46

Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight

Natalie Parde - UIC CS 421 47

How do we get actual
dependency labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job more
difficult (much larger set of operators from
which to choose!)

• Incorrect choices by the oracle lead to incorrect
parses since the algorithm cannot perform any
backtracking

• However, alternate sequences may also lead to
equally valid parses

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)

Natalie Parde - UIC CS 421 48

How does the oracle know what to choose?

� Generally, systems use supervised machine learning for this
task

� Logistic regression

� Support vector machines

� Neural networks

� The oracle learns which transitions to predict for new
configurations based on extracted features and/or
representations for labeled configurations in the training set

Natalie Parde - UIC CS 421 49

Neural Network-based Oracle

Natalie Parde - UIC CS 421 50

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

Neural Network-based Oracle

Natalie Parde - UIC CS 421 51

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Neural Network-based Oracle

Natalie Parde - UIC CS 421 52

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Neural Network-based Oracle

Natalie Parde - UIC CS 421 53

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Neural Network-based Oracle

Natalie Parde - UIC CS 421 54

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Shift

This
Week’s
Topics

Natalie Parde - UIC CS 421 55

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Graph-
based
Dependency
Parsing

• Search through the space of possible
dependency trees, attempting to
maximize a score based on individual
subtrees within the overall tree

• Edge-factored approaches determine
scores based on the scores of the
edges that comprise the tree

• overall_score(t) = ∑!∈# 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given

sentence, and e be its edges

Natalie Parde - UIC CS 421 56

Why use
graph-based
methods for
dependency
parsing?

• Since transition-based methods are
greedy, they can be fooled by local
optima

• Because of this, they tend to have high
accuracy for shorter dependency relations
but lower accuracy as the distance between
words increases

• Graph-based methods score entire
trees, thereby avoiding that issue

Natalie Parde - UIC CS 421
57

Maximum Spanning Tree

• Given an input sentence, construct a fully-connected, weighted,
directed graph

• Vertices are input words
• Directed edges represent all possible head-dependent

assignments
• Weights reflect the scores for each possible head-dependent

assignment, predicted by a supervised machine learning model
• A maximum spanning tree represents the preferred dependency

parse for the sentence, as determined by the weights

Natalie Parde - UIC CS 421 58

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 59

Maximum Spanning Tree:
Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 60

Two things to keep in
mind….

� Every vertex in a spanning tree has exactly
one incoming edge

� Absolute values of the edge scores are not
critical

� Relative weights of the edges entering a vertex
are what matter!

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 61

How do we
know that we
have a
maximum
spanning tree?

� Given a fully-connected graph G = (V, E), a subgraph
T = (V, F) is a spanning tree if:

� It has no cycles
� Each vertex (except the root) has exactly one

edge entering it

� If the greedy selection process produces a
spanning tree, then that tree is the maximum
spanning tree

� However, the greedy selection process may select
edges that result in cycles, which can be addressed
by:

� Collapsing cycles into new nodes, with edges
that previously entered or exited the cycle now
entering or exiting the new node

� Recursively applying the greedy selection
process to the updated graph until a
(maximum) spanning tree is found

Natalie Parde - UIC CS 421 62

Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

 bestInEdge ← argmax
!"($,&)∈)

𝑠𝑐𝑜𝑟𝑒[𝑒]

 F ← F ∪ bestInEdge

 for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

 score’[e] ← score[e] - score[bestInEdge]

 if T=(V,F) is a spanning tree:

 return T

 else:

 C ← a cycle in F

 G’ ← collapse(G, C)

 T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

 T ← expand(T’, C)

 return T

Natalie Parde - UIC CS 421 63

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 64

Maximum Spanning Tree:
Updated Example

root book

that

flight

4
4

12 5

6

5

7

8

7

Natalie Parde - UIC CS 421 65

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 66

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

?

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 67

Maximum Spanning Tree:
Updated Example

root book
12

that-
flight

-1

-4
-3

0 -2

-6

-7

-1

Natalie Parde - UIC CS 421 68

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 69

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 70

Maximum Spanning Tree:
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 71

How do we train our model to
predict edge weights?

• Similar approach to training the oracle in a transition-based parser
• Feature-based edge scoring models might predict weights based on:

• Words, lemmas, parts of speech
• Corresponding features from contexts before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

• We can also use neural networks for this process

Natalie Parde - UIC CS 421 72

This
Week’s
Topics

Natalie Parde - UIC CS 421 73

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Why do we need
meaning
representations?

� Somehow, we need to bridge the gap between
linguistic input and world knowledge to
perform semantic processing tasks such as:

� Answering essay questions on exams

� Deciding what to order at a restaurant

� Detecting sarcasm

� Following recipes

� Goal: Represent commonsense world
knowledge in logical form

Natalie Parde - UIC CS 421 74

Sample Meaning Representations
I have a pumpkin.

∃𝑥, 𝑦	Having 𝑥 ∧ 	Haver 𝑥, 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∧ HadThing 𝑥, 𝑦 ∧ Pumpkin 𝑦 Having

Haver Had-Thing

Speaker Pumpkin

Having
 Haver: Speaker
 HadThing: Pumpkin

Natalie Parde - UIC CS 421 75

Symbols

• Correspond to objects, properties of
objects, and relations among objects

• Symbols link linguistic input (words) to
meaning (world knowledge)

Natalie Parde - UIC CS 421 76

Having
 Haver: Speaker
 HadThing: Pumpkin

Meaning
representations

should be….

Verifiability
• Computational systems can verify the truth of a

meaning representation for a sentence by
matching it with knowledge base
representations

• Knowledge Base: A source of information about the
world

• Example proposition: Giordano’s serves deep
dish pizza.

• We can represent this as: Serves(Giordano’s,
DeepDishPizza)

• To verify the truth of this proposition, we would:
• Search a knowledge base containing facts about

restaurants
• If we found a fact matching this, we have verified the

proposition
• If not, we must assume that the fact is incorrect or, at

best, our knowledge base is incomplete

Serves(Giordano’s, DeepDishPizza)

Serves(Two Shades, Coffee)

Serves(City Winery, Wine)

Verified!

Natalie Parde - UIC CS 421 78

Unambiguous
Representations
• Ambiguity does not stop at syntax!
• Semantic ambiguities are everywhere:

• Sarcasm
• Idiom
• Metaphor
• Hyperbole

• To resolve semantic ambiguities, computational methods
must select which from a set of possible interpretations is
most correct, given the circumstances surrounding the
linguistic input

Let’s eat somewhere near SEO.

Let’s eat somewhere near SEO.

Let’s devour some building near SEO!

Let’s eat at a restaurant near SEO!
Natalie Parde - UIC CS 421 79

Vagueness
I want to eat dessert.

Cake?

Cookies?

Ice cream?
Pie?

Canonical Form

• Sentences are ambiguous when they could reasonably be assigned
multiple meaning representations

• However, multiple sentences could also be assigned the same
meaning representation

• Giordano’s serves deep dish pizza.
• They have deep dish pizza at Giordano’s.
• Deep dish pizza is served at Giordano’s.
• You can eat deep dish pizza at Giordano’s.

Natalie Parde - UIC CS 421 81

Inference and Variables

• It’s impossible for a knowledge base to
comprehensively cover all facts about the world,
so computational systems also need to be able
to draw commonsense inferences based on
meaning representations

• Will people who like deep dish pizza want
to eat at Giordano’s?

• We don’t have a fact explicitly specifying
that they do, but we can infer that if they
like deep dish pizza, they will probably
like a restaurant that serves it

Natalie Parde - UIC CS 421 82

Inference
and
Variables

• Inference: A system’s ability to draw valid
conclusions based on the meaning
representations of inputs and its store of
background knowledge

• Variables allow you to build propositions
without requiring a specific instance of
something

• Serves(x, DeepDishPizza)
• These propositions can only be successfully

matched by known instances from a
knowledge base that would resolve in a
truthful entire proposition

• Serves(x, DeepDishPizza)
• Serves(Giordano’s, DeepDishPizza) 🙂
• Serves(IDOF, DeepDishPizza) 🤨

Natalie Parde - UIC CS 421 83

Expressiveness

� Expressive power: The breadth of ideas
that can be represented in a language

� Meaning representations must be
expressive enough to handle a wide
range of subject matter

Natalie Parde - UIC CS 421

84

Summary:
Dependency
Parsing

85

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Dependency parsing is the process of
automatically determining directed
relationships between words in a
source sentence

• Numerous dependency tagsets exist, but
currently the most common tagset is the
set of universal dependencies

• Dependency parsers can be transition-
based or graph-based

• A popular transition-based method is the
arc standard approach

• A popular graph-based method is the
maximum spanning tree approach

• Both make use of supervised machine
learning to aid the decision-making
process

This
Week’s
Topics

Natalie Parde - UIC CS 421 86

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Model-Theoretic Semantics

Natalie Parde - UIC CS 421

All meaning
representation
schemes share an
ability to represent
objects, properties of
objects, and relations
among objects

A model is a formal
construct that stands
for a particular state of
affairs in the world that
we’re trying to
represent

Expressions (words or
phrases) in the
meaning representation
language can be
mapped to elements of
the model

87

Relevant
Terminology

� Vocabulary

� Non-Logical Vocabulary: Open-ended sets of names
for objects, properties, and relations in the world we’re
representing

� Logical Vocabulary: Closed set of symbols, operators,
quantifiers, and links that provide the formal means for
composing expressions in the language

� Domain: The set of objects that are part of the state of
affairs being represented in the model

� For a given domain, objects are elements
� grapes, violets, plums, CS421, Abari, Meghan

� Properties are sets of elements corresponding to a
specific characteristic

� purple = {grapes, violets, plums}
� Relations are sets of tuples, each of which contain

domain elements that take part in a specific relation
� TAFor = {(CS421, Abari), (CS421, Meghan)}

� Each object in the non-logical vocabulary corresponds
to a unique element in the domain; however, each
element in the domain does not need to be mentioned in a
meaning representation

Natalie Parde - UIC CS 421 88

Functions

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• We create mappings from non-logical
vocabulary to formal denotations using
functions or interpretations

• Assume that we have:
• A collection of restaurant patrons and

restaurants
• Various facts regarding the likes and

dislikes of patrons
• Various facts about the restaurants

• In our current state of affairs (our model)
we’re concerned with four patrons
designated by the non-logical symbols
(elements) Natalie, Devika, Nikolaos,
and Mina

• We’ll use the constants a, b, c, and d to
refer to those respective elements

89

Example
Application • We’re also concerned with three restaurants

designated by the non-logical symbols
Giordano’s, IDOF, and Artopolis

• We’ll use the constants e, f, and g to refer to
those respective elements

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie Parde - UIC CS 421 90

Example
Application • Finally, we’ll assume that our model deals with

three cuisines in general, designated by the
non-logical symbols Italian, Mediterranean, and
Greek

• We’ll use the constants i, j, and k to refer to
those elements

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

Natalie Parde - UIC CS 421 91

Example
Application

• Now, let’s assume we need to represent a few
properties of restaurants:

• Fast denotes the subset of restaurants that are known
to make food quickly

• TableService denotes the subset of restaurants for
which a waiter will come to your table to take your
order

• We also need to represent a few relations:
• Like denotes the tuples indicating which restaurants

individual patrons like
• Serve denotes the tuples indicating which restaurants

serve specific cuisines

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Natalie Parde - UIC CS 421 92

Example
Application

• This means that we have created the domain
D = {a, b, c, d, e, f, g, i, j, k}

• We can evaluate representations like Natalie
likes IDOF or Giordano’s serves Greek by
mapping the objects in the meaning
representations to their corresponding
domain elements, and any links to the
appropriate relations in the model

• Natalie likes IDOF → a likes f → Like(a, f) 🙂
• Giordano’s serves Greek → e serves k → Serve(e, k) 🤨

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 93

Example
Application

• Thus, we’re just using sets and operations
on sets to ground the expressions in our
meaning representations

• What about more complex sentences?
• Nikolaos likes Giordano’s and Devika likes Artopolis.
• Mina likes fast restaurants.
• Not everybody likes IDOF.

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 94

Example
Application • Plausible meaning representations for the

previous examples will not map directly to
individual entities, properties, or relations!

• They involve:
• Conjunctions
• Equality
• Variables
• Negations

• What we need are truth-conditional
semantics

• This is where first-order logic is useful

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie Parde - UIC CS 421 95

This
Week’s
Topics

Natalie Parde - UIC CS 421 96

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

First-Order
Logic

Natalie Parde - UIC CS 421 97

Common across all types of terms:

Each one can be thought of as a way of pointing to a specific
object

Term: First-order logic device for representing objects

Constants Functions Variables

A meaning representation language (a way to
represent knowledge in a way that is computationally

verifiable and supports semantic inference)

First-Order
Logic

• Constants: Specific objects in the world being described
• Conventionally depicted as single capitalized letters (A, B)

or words (Natalie, Devika)
• Refer to exactly one object, although objects can have

more than one constant that refers to them
• Functions: Concepts that are syntactically equivalent to

single-argument predicates
• Can refer to specific objects without having to associate a

named constant with them, e.g., LocationOf(Giordano’s)
• Variables: Provide the ability to make assertions and draw

inferences without having to refer to a specific named object
• Conventionally depicted as single lowercase letters

• Predicates: Symbols that refer to the relations between a fixed
number of objects in the domain

• Can have one or more arguments
• Serve(Giordano’s, Italian)

• Relates two objects
• Restaurant(Giordano’s)

• Asserts a property of a single object

• Predicates can be put
together using logical
connectives

• and ∧
• or ∨
• implies →

• They can also be
negated

• not ¬

Natalie Parde - UIC CS 421 98

Variables
and
Quantifiers

• Two basic operators in first-order logic are:
• ∃: The existential quantifier

• Pronounced “there exists”
• ∀: The universal quantifier

• Pronounced “for all”
• These two operators make it possible to

represent many more sentences!
• a restaurant → ∃x Restaurant(x)
• all restaurants → ∀x Restaurant(x)

Natalie Parde - UIC CS 421 99

We can combine these operators with other basic elements of
first-order logic to build logical representations of complex
sentences.

• Nikolaos likes Giordano’s and Devika
likes Artopolis.

• Like(Nikolaos, Giordano’s) ∧
Like(Devika, Artopolis)

• Mina likes fast restaurants.
• ∀x Fast(x) → Like(Mina, x)

• Not everybody likes IDOF.
• ∃x Person(x) ∧	¬Like(x, IDOF)

Natalie Parde - UIC CS 421 100

P Q ¬P P∧Q P∨Q P→Q
False False True False False True

False True True False True True

True False False False True False

True True False True True True

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Natalie Parde - UIC CS 421 101

Example: Is the following sentence
valid according to our model?

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Natalie Parde - UIC CS 421

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

102

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 103

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 104

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

Natalie Parde - UIC CS 421 105

Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {Italian,
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g),
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

False …not valid!
Natalie Parde - UIC CS 421 106

A few additional
notes….

� Formulas involving ∃ are true if there is any
substitution of terms for variables that results
in a formula that is true according to the
model

� Formulas involving ∀ are true only if all
substitutions of terms for variables result in
formulas that are true according to the model

� Modus ponens: If a conditional statement is
accepted (if p then q), and the antecedent (p)
holds, then the consequent (q) may be
inferred

� More formally:
𝛼
𝑎 ⇒ 𝛽
𝛽

Natalie Parde - UIC CS 421 107

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

Natalie Parde - UIC CS 421 108

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

Natalie Parde - UIC CS 421 109

Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that
Artopolis is a Greek restaurant) ✔

consequent may be inferred 🙂

Natalie Parde - UIC CS 421 110

Events can be particularly challenging to
represent in formal logic!

• You may need to:
• Determine the correct number of roles for the event
• Represent facts about different roles associated with the event
• Ensure that all correct (and only correct) inferences can be derived

directly from the event representation
• Some events may theoretically take a variable number of

arguments
• Natalie drinks.
• Natalie drinks tea.

• However, predicates in first-order logic have fixed arity (they
accept a fixed number of arguments)

• Can be solved by creating different versions of the same predicate,
developing meaning postulates, or allowing “missing” arguments (e.g.,
“∃x Drink(Natalie, x)”)

Natalie Parde - UIC CS 421 111

States: Conditions or
properties that remain
unchanged over some

period of time

Events: Indicate
changes in some state

of affairs

Instead of regular variables, we can
add event variables.

• Event variable: An argument to the event representation that allows for additional
assertions to be included if needed

• ∃e Drink(Natalie, e)
• If we determine that the actor must drink something specific: ∃e Drink(Natalie, e) ∧

Beverage(e, tea)
• More generally, we could define the representation:

• ∃e Drink(e) ∧ Drinker(e, Natalie) ∧ Beverage(e, tea)
• With this change, there is no need to specify a fixed number of arguments for a

given surface predicate

Natalie Parde - UIC CS 421 112

Description Logics

� How to add increased structure to semantics defined by models?

� Description Logics: DiXerent logical approaches that correspond to subsets of first-order logic

� More specific constraints make it possible to model more specific forms of inference

� Represent knowledge about:

� Categories

� Individuals who belong to those categories

� Relationships that can hold among those individuals

� Terminology: The set of categories comprising a given application domain

� Ontology: Hierarchical representation of subset/superset relations among categories

Natalie Parde - UIC CS 421 113

Representation

Natalie Parde - UIC CS 421

Restaurant(x) = Restaurant Restaurant(Giordano’s) =
Restaurant(Giordano’s)

First-order logic Description logics

114

Hierarchical
Structure

• Can be directly specified
using subsumption relations
between concepts

• Subsumption: All members
of category C are also
members of category D, or
𝐶 ⊑ 𝐷

• Relations allow us to
explicitly define necessary
and sufficient conditions for
categories

• Italian	Restaurant	 ⊑
Restaurant	 ⊓
∃hasCuisine.ItalianCuisine

• Greek	Restaurant	 ⊑
Restaurant	 ⊓
∃hasCuisine.GreekCuisine

Natalie Parde - UIC CS 421

Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant

115

Category Membership

� Coverage or disjointness can be further specified using logical operators

� Italian	Restaurant	 ⊑ NOT	Greek	Restaurant
�Restaurant	 ⊑
𝐎𝐑	(Italian	Restaurant, Greek	Restaurant,Mediterranean	Restaurant)

� Relations provide further information about category membership

� Italian	Cuisine	 ⊑ Cuisine
� Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine	=	
∀𝑥ItalianRestaurant(𝑥) ⟶ Restaurant(𝑥) ∧ (∃𝑦Serves(𝑥, 𝑦) ∧ ItalianCuisine(𝑦))

Natalie Parde - UIC CS 421 116

Inference Commercial
Establishment

Restaurant

Italian
Restaurant

Greek
Restaurant

Mediterranean
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant

117

Real-World Example of Description Logics

• Web Ontology Language (OWL)
• Formally specifies semantic categories of

the internet through the creation and
deployment of ontologies for application
areas of interest

• Built using a description logic similar to that
described in the previous slides

Natalie Parde - UIC CS 421 118

This
Week’s
Topics

Natalie Parde - UIC CS 421 119

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Semantic Roles

� When extracting information from text, it is
useful to understand semantic roles, or
how participants relate to events

� Who did what?

� When?

� Where?

� There are many possible semantic roles,
and they are often application- or domain-
specific

CS 421 - Natalie Parde
120

Recall the meaning representations
we’ve already seen….

CS 421 - Natalie Parde 121

Natalie baked the cake.

∃𝑒, 𝑥, 𝑦	Baking(𝑒) ∧ Baker(𝑒, Natalie) ∧ BakedThing(𝑒, 𝑦) ∧ Cake(𝑦)

Recall the meaning representations
we’ve already seen….

CS 421 - Natalie Parde 122

Natalie baked the cake.

∃𝑒, 𝑥, 𝑦	Baking(𝑒) ∧ Baker(𝑒, Natalie) ∧ BakedThing(𝑒, 𝑦) ∧ Cake(𝑦)

• Subject of “bake”
• Deep role specific

to the “baking”
event

What if we consider another
sentence?

CS 421 - Natalie Parde 123

Natalie ate the cake.

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Eater(𝑒, Natalie) ∧ EatenThing(𝑒, 𝑦) ∧ Cake(𝑦)

• Subject of “ate”
• Deep role specific

to the “eating”
event

There are
commonalities
between these
roles!

� “Bakers” and “Eaters” are both:

� Volitional actors

� Generally animate

� Have causal responsibility for their events

� Semantic roles (sometimes referred to as thematic roles) are how we
capture these commonalities more formally

CS 421 - Natalie Parde 124

∃", $, %	Baking(") ∧ Baker(", Natalie) ∧ BakedThing(", %) ∧ Cake(%)

∃", $, %	Eating(") ∧ Eater(", Natalie) ∧ EatenThing(", %) ∧ Cake(%)Agent

Theme

Semantic roles are ancient!

• First formalized by Pāṇini sometime between 700-400 BCE
• More recently formalized in the 1960s

• Fillmore (1968): https://files.eric.ed.gov/fulltext/ED019631.pdf
• Gruber (1965): http://www.ai.mit.edu/projects/dm/theses/gruber65.pdf

• No universally agreed-upon roles, but some are common across numerous papers

CS 421 - Natalie Parde 125

https://files.eric.ed.gov/fulltext/ED019631.pdf
http://www.ai.mit.edu/projects/dm/theses/gruber65.pdf

Common
Semantic
Roles

CS 421 - Natalie Parde

THEMATIC
ROLE

DEFINITION EXAMPLE

Agent The volitional causer of an event The waiter spilled the soup.

Experiencer The experiencer of an event John has a headache.

Force The non-volitional causer of the event The wind blows debris from the mall into
our yards.

Theme The participant most directly affected by an
event

Only after Benjamin Franklin broke the
ice….

Result The end product of an event The city built a regulation-size baseball
diamond….

Content The proposition or content of a propositional
event

Mona asked, “You met Mary Ann at the
supermarket?”

Instrument An instrument used in an event He poached catfish, stunning them with a
shocking device….

Beneficiary The beneficiary of an event Whenever Ann Callahan makes hotel
reservations for her boss….

Source The origin of the object of a transfer event I flew in from Boston.

Goal The destination of an object of a transfer
event

I drove to Portland.

126

Some sets of semantic
roles are finer-grained,
whereas others are
broader and more abstract

Semantic roles
offer another way
for us to
construct shallow
meaning
representations.

127

CS 421 - Natalie Parde

In general, semantic roles help us
generalize over different surface

realizations of the same predicate
arguments

They allow us to:

Make inferences that aren’t
possible from surface

representations or parse trees

Create intermediate
languages for downstream

tasks

For example….

CS 421 - Natalie Parde 128

Natalie baked the cake.

Natalie baked the cake in the oven.

The oven baked the cake.

The cake baked.

The cake was baked by Natalie.

Agent

Theme

Instrument

Thematic Grid

� The set of semantic role arguments taken by a verb

� Also sometimes referred to as a case frame

� Semantic roles can often be realized in different
syntactic positions

� For example:

� Agent=Subject; Theme=Object

� Instrument=Subject; Theme=Object

� Theme=Subject

� Diathesis Alternations: Alternate acceptable
structural realizations for arguments, facilitating
generalization over different surface realizations

� Different verbs can participate in different
alternations

Natalie baked the cake.

Natalie baked the cake in the oven.

The oven baked the cake.

The cake baked.

The cake was baked by Natalie.

Agent

Theme

Instrument

CS 421 - Natalie Parde 129

Defining Role
Sets
• Researchers often find it

necessary to fragment more
general roles (e.g., Agent) into
more specific roles

CS 421 - Natalie Parde 130

Instrument

Intermediary: Can
appear as subjects

Enabling: Cannot
appear as subjects

Conformity to Predefined
Properties

• Individual noun phrases may not conform to all properties of an
Agent, but they might conform to most …can they still be labeled
with this role?

• Might require even more fragmentation!

CS 421 - Natalie Parde 131

How can
these
challenges
be
addressed?

• Generalized semantic
roles

• Proto-Agents
• Proto-Patients
• Fewer, more abstract

roles
• Semantic roles tailored

to specific semantic
classes

• Additional, more
specific roles 132

CS 421 - Natalie Parde

VerbNet
• An online resource indicating the semantic classes to which many English

verbs belong
• Linked to WordNet and FrameNet entries
• Link: https://verbs.colorado.edu/verbnet/

• Also an API: https://github.com/cu-clear/verbnet/
• Also accessible via NLTK:

https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html

CS 421 - Natalie Parde 133

https://verbs.colorado.edu/verbnet/
https://github.com/cu-clear/verbnet/
https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html

VerbNet

CS 421 - Natalie Parde 134

Semantic Roles

Generalized Semantic Roles
� Abstract over specific thematic roles

� Roles are defined by heuristic features that
accompany properties likely to correspond
with the generalized class

� Proto-Agent: Agent-like properties

� More overlapping properties → argument
likelier to be labeled with that role

Specialized Semantic Roles
� Define roles that are specific to a

particular verb or a group of semantically
related verbs or nouns

� A Cook creates a Produced_food from
(raw) Ingredients.

� The Heating_instrument and/or
the Container may also be specified.

CS 421 - Natalie Parde 135

What are some popular resources for semantic role labeling?

CS 421 - Natalie Parde 136

• https://propbank.github.io/
• Both generalized and verb-specific roles

PropBank

• https://framenet.icsi.berkeley.edu/fndrupal/
• Semantic roles that are specific to general ideas or frames

FrameNet

https://propbank.github.io/
https://framenet.icsi.berkeley.edu/fndrupal/

PropBank

• Proposition Bank
• Available in numerous languages

• English
• Hindi
• Chinese
• Arabic
• Finnish
• Portuguese
• Basque
• Turkish

CS 421 - Natalie Parde 137

PropBank

� Provides semantic roles
associated with diXerent verb
senses

� Senses are given numbered
arguments as roles
� Arg0
� Arg1
� …
� ArgN

� PropBank entries:
� Referred to as frame files
� Definitions for each role are

informal glosses

CS 421 - Natalie Parde 138

agree.01
• Arg0: Agreer
• Arg1: Proposition
• Arg2: Other entity agreeing

• Ex1: [Arg0 The group] agreed
[Arg1 it wouldn’t make an
offer].

• Ex2: [ArgM-TMP Usually] [Arg0
John] agrees [Arg2 with Mary]
[Arg1 on everything].

fall.01
• Arg1: Logical subject, patient, thing

falling
• Arg2: Extent, amount fallen
• Arg3: start point
• Arg4: end point, end state of arg1

• Ex1: [Arg1 Sales] fell [Arg4 to $25
million] [Arg3 from $27 million].

• [Arg1 The average junk bond] fell
[Arg2 by 4.2%].

PropBank
can be
useful
for….

• Recovering shallow semantic information
• Inferring commonality in event structures

for varying surface forms
• Representing modification or adjunct

meanings
• Denoted using non-numbered arguments

called ArgMs
• ArgMs aren’t listed in individual frame

files since they’re generalizable across
predicates

CS 421 - Natalie Parde 139

Common
Modifier
Arguments

CS 421 - Natalie Parde 140

ArgM Description Example
TMP When? Yesterday evening, now

LOC Where? At the museum, in Chicago

DIR Where to/from? Down, to Chicago

MNR How? Clearly, with much enthusiasm

PRP/CAU Why? Because, in response to the
ruling

PropBank

CS 421 - Natalie Parde 141

Check out
PropBank!

� Link:
� https://propbank.github.io/

� Paper:

� Paul Kingsbury and Martha Palmer. From
Treebank to PropBank. 2002.
In Proceedings of the 3rd International
Conference on Language Resources and
Evaluation (LREC-2002), Las Palmas,
Spain.

� PropBank is focused on verbs, but a related
project also annotates nominal predicates
with the same types of semantic roles:

� NomBank:
https://nlp.cs.nyu.edu/meyers/NomBan
k.html

CS 421 - Natalie Parde 142

https://propbank.github.io/
http://www.lrec-conf.org/proceedings/lrec2002/pdf/283.pdf
http://www.lrec-conf.org/proceedings/lrec2002/pdf/283.pdf
https://nlp.cs.nyu.edu/meyers/NomBank.html
https://nlp.cs.nyu.edu/meyers/NomBank.html

Making
inferences about

semantic
commonalities is

useful….

• Even more useful: Making
inferences across different
verbs, or between verbs and
nouns

• Potentially applicable to more
situations

CS 421 - Natalie Parde
143

FrameNet • Semantic role labeling
project where roles are
specific to frames rather
than individual verbs

• Frame: A set of
background information
that unites a group of
words

CS 421 - Natalie Parde

[Arg1 The price of yarn] increased [Arg2

500%].

[Arg1 The price of yarn] rose [Arg2 500%].

There has been a [Arg2 500%] rise in

[Arg1 the price of yarn].

=

144

Frames
• Background knowledge structures that define:

• Specific frame elements associated with a given topic
• Predicates that use these frame elements

• Frame element: A frame-specific semantic role

CS 421 - Natalie Parde 145

Frames

� Each word within a sentence or clause is understood to
evoke a frame, and participate in that frame in some
way

� FrameNet includes:

� Manually specified frames and frame elements

� Example sentences

CS 421 - Natalie Parde 146

• Frame-specific
elements

Core roles

• More general elements
• Time, location, etc.

• Similar to the ArgM
arguments in PropBank

Non-core roles

Example Sentences

CS 421 - Natalie Parde 147

[ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

[ITEM It] has increased [FINAL STATE to having them 1 day a month].

[ITEM Microsoft shares] fell [FINAL VALUE to 7 5/8].

[ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among men].

a steady increase [INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM in dividends]

a [DIFFERENCE 5%] [ITEM dividend] increase...

Frame: change_position_on_a_scale

FrameNet

� Frame relationships (i.e., inheritance or causation) allow us to
understand common event semantics across verbal and nominal
causative and non-causative uses

� FrameNet databases have been developed for a variety of languages

� Link:

� https://framenet.icsi.berkeley.edu/fndrupal/

� Manual:
� Josef Ruppenhofer, Michael Ellsworth, Miriam R. L Petruck,

Christopher R. Johnson, Collin F. Baker, Jan ScheXczyk:
FrameNet II: Extended Theory and Practice (Revised November 1,
2016.): https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf

CS 421 - Natalie Parde 148

https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf

This
Week’s
Topics

Natalie Parde - UIC CS 421 149

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Semantic
Role
Labeling

• Semantic role labeling: Automatically
assigning semantic roles to predicate
arguments

• Often solved using supervised machine
learning methods

CS 421 - Natalie Parde

The University of Illinois Chicago offered free flu shots.

150

How are
roles
defined?

• Depends on the resource!
• Often, FrameNet and/or PropBank are

used to:
• Specify predicates
• Define roles
• Provide training and test data

CS 421 - Natalie Parde
151

Numerous
approaches
have been used
to perform
semantic role
labeling.

� Feature-based algorithms:
� Parse the input string
� Traverse the parse to find predicates
� Decide the semantic role (if any) of each

node in the parse tree with respect to each
predicate

� Feature-based algorithms employ standard
supervised machine learning algorithms and a
wide variety of feature representations

� Many approaches also perform a second pass
to address global consistency using the
Viterbi algorithm or reranking approaches
� Constituents in FrameNet and PropBank

cannot overlap
� PropBank does not allow multiple

arguments of the same type

CS 421 - Natalie Parde 152

Features for
Semantic Role
Labeling

� Common features:

� Governing predicate

� Constituent type

� Head word of the constituent

� Part of speech of the head word

� Path in the parse tree from the constituent to the
predicate

� Whether the voice of the surrounding clause is active or
passive

� Whether the constituent appears before or after the
predicate

� Set of expected arguments for the verb phrase

� Named entity type of the constituent

� First and last word(s) of the constituent

CS 421 - Natalie Parde 153

Modern SRL is also often performed
using neural models.

Neural Semantic Role Labeling

CS 421 - Natalie Parde

t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings

155

Neural Semantic Role Labeling

CS 421 - Natalie Parde

t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings

Left-to-right LSTM

Right-to-left LSTM

Concatenation

156

Neural Semantic Role Labeling

CS 421 - Natalie Parde

t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings

Left-to-right LSTM

Right-to-left LSTM

Concatenation

Feedforward + Softmax

B-Arg0 I-Arg0 B-Pred B-Arg1

157

Evaluating
Semantic
Role
Labelers

C
S

42
1

- N
at

al
ie

 P
ar

de

• True positives: Argument labels
assigned to the correct word
sequence or parse constituents

• Then, we can compute our standard
NLP metrics:

• Precision
• Recall
• F-measure

158

This
Week’s
Topics

Natalie Parde - UIC CS 421 159

Tuesday

Dependency Structure
Transition-Based
Dependency Parsing
Graph-Based Dependency
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences

Relationships
between
predicates and
arguments can
also be defined
in other ways.

� Sometimes, there are conceptual or
semantic limitations on which words can
act as arguments to predicates

� We refer to these as selectional
restrictions

CS 421 - Natalie Parde 160

Let’s eat somewhere
near SEO.

Let’s devour some building near SEO!

What are
selectional

restrictions?

• Selectional restrictions: Semantic constraints
placed upon predicates, governing the types of
concepts that can fill those predicates’ semantic
roles

Let’s eat somewhere
near SEO.

Let’s eat at a restaurant
near SEO!

161

Let’s eat cake!

Selectional
Restrictions

� Associated with senses, not words
themselves

� Vary in their specificity
� To eat: THEME should be edible

� To sip: THEME should be edible and liquid

� The set of concepts needed for representing
selectional restrictions is open-ended
� Being a liquid

� Being edible

� …
� This makes selectional restrictions diberent

from other ways to represent lexical
knowledge

� For example, parts of speech are finite
and limited

CS 421 - Natalie Parde 162

One way to
represent
selectional
restrictions….

• Extend the logical representations we’ve
already seen

• Use the same components we’ve used
for representing events

• Event variable
• Predicate denoting event
• Variables and relations for event roles

CS 421 - Natalie Parde 163

Representing Selectional
Restrictions

CS 421 - Natalie Parde

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Agent(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦)

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Agent(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦) ∧ EdibleThing(𝑦)

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Eater(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦) ∧ EdibleThing(𝑦) ∧ Pizza(𝑦)

164

Selectional Preferences
• Selectional restrictions → hard constraints
• Selectional preferences → soft constraints
• Many systems tend to use selectional preferences rather than

selectional restrictions

CS 421 - Natalie Parde

She was way faster than everyone else …the other runners ate her dust.

Spit that out, you can’t eat plastic!

165

Selectional
Preference

• Selectional preferences, SP(v), are defined as
the difference between two distributions:

• Distribution of the expected semantic
classes, P(c)

• Distribution of the expected semantic
classes for a specific verb, P(c|v)

• This difference can be quantified using
Kullback-Leibler (KL) divergence, D(P||Q):

• 𝐷(𝑃| 𝑄 = ∑Q 𝑃(𝑥) log
R(Q)
U(Q)

• 𝑆R 𝑣 = 𝐷(𝑃(𝑐|𝑣)||𝑃(𝑐)) 	= ∑V 𝑃(𝑐|𝑣) log
R(V|X)
R(V)

• Selectional association then indicates how
much a given class contributes to a verb’s
overall selectional preference

• 𝐴! 𝑣, 𝑐 = "
#Y $

𝑃(𝑐|𝑣) log %('|$)
%(')

CS 421 - Natalie Parde
166

Selectional
Preference

via
Conditional
Probability

How do we
evaluate the
quality of
calculated
selectional
preferences?

CS 421 - Natalie Parde 168

Pseudoword task

• Determine which of two words are more
preferred by a given verb, and compute how
often the selectional preference model
makes the correct choice

Human selectional preference
scores
• Check correlation between human

selectional preference scores and those
predicted by the model

Summary:
Model-Theoretic
Semantics and
Semantic Role
Labeling

� In model-theoretic semantics, the model serves as a formal
construct representing a particular state of aXairs in the world

� First-order logic maps linguistic input to world knowledge
using logical rules

� First-order logic makes use of both existential and universal
quantifiers

� Description logic models semantic domains using subsets of
first-order logic, restricting expressiveness such that it
guarantees the tractability of certain kinds of inference

� Semantic roles define argument roles with respect to a
predicate

� PropBank and FrameNet also define various general and
specific semantic role types

� Semantic role labeling is the task of automatically assigning
semantic roles to words or spans of words in a specific context

� Selectional restrictions are hard constraints placed upon the
semantic properties of arguments

� Selectional preferences are soft constraints placed on those
properties, and can have varying selectional association
strength

Natalie Parde - UIC CS 421 169

