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What is semantic parsing?

� The process of extracting semantic structure or meaning from natural language input

� What are the semantic dependencies present in the language sample?

� How do elements in the language sample relate to one another logically?

� What semantic roles are filled in the language sample?
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Most popular 
semantic 
parsing task: 
dependency 
parsing

� Automatically determining directed 
grammatical and semantic relationships 
between words 

� Semantic: Focused on meaning

� This information is useful for many NLP 
applications, including:

� Coreference resolution

� Question answering

� Information extraction
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How are dependency grammars different from CFGs?

� CFGs generate constituent-based representations

� Noun phrases, verb phrases, etc.

� These tell us about the syntactic structure

� Dependency grammars define sentence structure in terms of the semantic relationships 
between individual words

� Nominal subject, direct object, etc.

� For both, labels are still drawn from a fixed inventory of grammatical relations
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Dependency 
grammars are 
especially 
helpful for 
interpreting 
morphologically 
rich languages 
with a 
relatively free 
word order.
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Morphologically rich: Grammatical 
relationships are indicated by changes to 
words, rather than sentence position

Free word order: Words can be moved 
around in a sentence but the overall 
meaning will remain the same (less 
reliance on syntax)

Typically, languages that are 
morphologically richer have less strict 
syntactic rules



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Typed Dependency Structure

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case
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Comparison with Syntactic Parse

I prefer the morning flight through Dallas

nsubj

root
dobj

det

nmod

nmod

case

I

prefer

the morning

flight

through

Dallas

vs.

S

NP VP

Pronoun Verb NP

Det Nominal

Nominal PP

Nominal Noun Prep. NP

PropN

I prefer

the

morning

Noun flight through

DallasNatalie Parde - UIC CS 421 9



Dependency Relations

• Heads are linked to the words that are immediately dependent on them
• Relation types describe the dependent’s role with respect to its head

• Subject
• Direct object
• Indirect object
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Dependency Relations

• Relation types tend to correlate with sentence position and constituent type in 
English, but there is not an explicit connection between these elements

• In languages with relatively free word order, the information encoded in these 
relation types often cannot be estimated from constituency trees
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Just like with 
CFGs, there 
are a variety 
of taxonomies 
that can be 
used to label 
dependencies 
between 
words.12
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• A couple of the most popular dependency 
treebanks and tagsets include:

• Stanford dependencies
• https://downloads.cs.stanford.edu/nlp/so

ftware/dependencies_manual.pdf
• Universal dependencies

• https://universaldependencies.org/
• Most popular tagset recently!
• Dependencies can be categorized as:

• Clausal Relations: Describe 
syntactic roles that say something 
about the predicate

• Modifier Relations: Describe the 
ways that words can modify their 
heads

https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://universaldependencies.org/


Clausal Relations

I prefer the purple plant

nsubj

root
dobj

det

amod
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Modifier Relations
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I prefer the purple plant

nsubj

root
dobj

det

amod
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

Natalie wrote a dissertation.
nsubj(wrote, Natalie)

Natalie wrote a dissertation.
obj(wrote, dissertation)

Natalie wrote UIC a dissertation.
iobj(wrote, UIC)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

Natalie wrote a dissertation for UIC.
obl(wrote, UIC)

UIC, read my dissertation!
vocative(read, UIC)

There is nothing but praise for the dissertation.
expl(nothing, there)

You must not eat it, the dissertation.
dislocated(eat, dissertation)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

The purpose of this dissertation is to determine the best 
homework strategy.
nmod(purpose, dissertation)

My school, UIC, is in Chicago.
appos(school, UIC)

UIC has 34,000 students.
nummod(students, 34,000)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

What she said about starting the project 
makes sense.
csubj(makes, said)

She said you should start it now.
ccomp(said, start)

I consider it already done.
xcomp(consider, done)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

He was upset when she read her 
dissertation to him.
advcl(upset, read)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

There is a document discussing the 
assignment.
acl(document, discussing)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

UIC quickly emailed the students about the 
day off.
advmod(emailed, quickly)

She said, “Well, let’s schedule a meeting.”
discourse(schedule, well)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

He read the extensive syllabus.
amod(syllabus, extensive)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

UIC had closed the campus for the break.
aux(closed, had)

It was good to have some time off.
cop(good, was)

They knew that this would refresh everyone for the spring.
mark(refresh, that)
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Universal Dependencies

Nominals Clauses Modifier Words Function Words
Core Arguments 
of Clausal 
Predicates

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core 
Dependents of 
Clausal 
Predicates

obl
vocative

expl
dislocated

advcl advmod
discourse

aux
cop

mark

Dependents of 
Nominals

nmod
appos

nummod
acl amod

det
clf

case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details): 
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep

Fu
nc

tio
na

l c
at

eg
or

ie
s 

w
.r.

t. 
he

ad

Structural categories of dependent

That was the goal.
det(goal, the)

Everyone went on vacation after that.
case(that, after)
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A word that accompanies a noun to 
reflect some conceptual classification 
of the noun (not used in English)
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Dependency 
Formalisms
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Dependency structures are directed graphs
• G = (V, A)
• Vertices (V) correspond to the words in a sentence

• May also include punctuation
• In morphologically rich languages, may include stems 

and affixes
• Arcs (A) are ordered pairs of vertices that capture the 

grammatical relationships between those words

In general, dependency structures:
• Must be connected
• Must have a designated root node with no incoming arcs
• Must be acyclic

Additional Notes
• All vertices except the root node have exactly one 

incoming arc
• There is a unique path from the root node to each vertex



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Types of Dependency Parsers

Transition-based
• Build a single tree in a beginning-to-end sweep over the input sentenceTransition

Graph-based
• Search through the space of possible trees for a given sentence, and try 

to find the tree that maximizes some score
Graph
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Transition-based Dependency 
Parsing

• Earliest transition-based approach: shift-
reduce parsing

• Input tokens are successively shifted 
onto a stack

• The two top elements of the stack are 
matched against a set of possible 
relations provided by some 
knowledge source

• When a match is found, a head-
dependent relation between the 
matched elements is asserted

• Goal is to find a final parse that accounts 
for all words

Oracle

Stack Input BufferDependency Relations

Natalie Parde - UIC CS 421
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Transition-
based 
Parsing

• We can define transition operators to 
guide the parser’s decisions

• Transition operators work by producing 
new configurations:

• Stack
• Input buffer of words
• Set of relations representing a 

dependency tree

Natalie Parde - UIC CS 421
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Transition-
based 
Parsing

Natalie Parde - UIC CS 421

• Stack contains the ROOT node
• Input buffer is initialized with all 

words in the sentence, in order
• Empty set of relations represents 

the parse

Initial configuration:

• Stack should be empty (except 
ROOT)

• Input buffer should be empty
• Set of relations represents the 

parse

Final configuration:

31



Operators

• The operators used in transition-based parsing then perform one of 
the following tasks:

• Assign the current word as the head of some other word that 
has already been seen

• Assign some other word that has already been seen as the 
head of the current word

• Do nothing with the current word
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Operators

• More formally, these operators are defined as:
• LeftArc: Asserts a head-dependent relation between the 

word at the top of the stack and the word directly beneath 
it (the second word), and removes the second word from 
the stack

• Cannot be applied when ROOT is the second element 
in the stack

• Requires two elements on the stack
• RightArc: Asserts a head-dependent relation between the 

second word and the word at the top of the stack, and 
removes the word at the top of the stack

• Requires two elements on the stack
• Shift: Removes a word from the front of the input buffer 

and pushes it onto the stack
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Arc Standard 
Approach to 
Transition-
based Parsing

� These operators implement the arc standard 
approach to transition-based parsing

� Notable characteristics:

� Transition operators only assert relations 
between elements at the top of the stack

� Once an element has been assigned its 
head, it is removed from the stack
�Not available for further processing!

� The arc standard approach is a greedy 
algorithm

� Benefits:
� Reasonably effective

� Simple to implement
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Formal Algorithm: Arc Standard 
Approach
state ← {[root], [words], []}

while state not final:

  # Choose which transition operator to apply

 transition ← oracle(state)

  # Apply the operator and create a new state

 state ← apply(transition, state)

Natalie Parde - UIC CS 421 35

Process ends when:
• All words in the sentence have been consumed
• The ROOT node is the only element remaining on the stack



Arc Standard: Example
book me the morning flightInput Buffer

Stack root

Relations
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Arc Standard: Example
me the morning flightInput Buffer

Stack book root

Relations

Only one item in the stack!

Shift book from the input 
buffer to the stack
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Arc Standard: Example
the morning flightInput Buffer

Stack me book root

Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift me from the input 
buffer to the stack
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Arc Standard: Example
the morning flightInput Buffer

Stack book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects RightArc

Remove me from the stack

Add relation (book → me) to 
the set of relations 
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Arc Standard: Example
morning flightInput Buffer

Stack the book root

(book → me)Relations

Valid options: Shift, RightArc

Oracle selects Shift

Shift the from the input 
buffer to the stack
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Arc Standard: Example
flightInput Buffer

Stack morning the book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects Shift

Shift morning from the input 
buffer to the stack
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Arc Standard: Example
Input Buffer

Stack flight morning the book root

(book → me)Relations

Valid options: Shift, 
RightArc, LeftArc

Oracle selects Shift

Shift flight from the input 
buffer to the stack
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Arc Standard: Example
Input Buffer

Stack flight the book root

(book → me)
(flight → morning)Relations

Valid options: RightArc, 
LeftArc

Oracle selects LeftArc

Remove morning from the 
stack

Add relation (flight → 
morning) to the set of 
relations 
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Arc Standard: Example
Input Buffer

Stack flight book root

(book → me)
(flight → morning)

(flight → the)
Relations

Valid options: RightArc, 
LeftArc

Oracle selects LeftArc

Remove the from the stack

Add relation (flight → the) to 
the set of relations 
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Arc Standard: Example
Input Buffer

Stack book root

(book → me)
(flight → morning)

(flight → the)
(book → flight)

Relations

Valid options: RightArc, 
LeftArc

Oracle selects RightArc

Remove flight from the 
stack

Add relation (book → flight) 
to the set of relations 
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Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: RightArc

Oracle selects RightArc

Remove book from the 
stack

Add relation (root → book) 
to the set of relations 
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Arc Standard: Example
Input Buffer

Stack root

(book → me)
(flight → morning)

(flight → the)
(book → flight)
(root → book)

Relations

Valid options: None

State is final

book me the morning flight
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How do we get actual 
dependency labels?

• Parameterize LeftArc and RightArc
• LeftArc(nsubj), RightArc(obj), etc.

• Of course, this makes the oracle’s job more 
difficult (much larger set of operators from 
which to choose!)

• Incorrect choices by the oracle lead to incorrect 
parses since the algorithm cannot perform any 
backtracking

• However, alternate sequences may also lead to 
equally valid parses

iobj(book → me)
compound(flight → morning)

det(flight → the)
obj(book → flight)
root(root → book)
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How does the oracle know what to choose?

� Generally, systems use supervised machine learning for this 
task

� Logistic regression

� Support vector machines

� Neural networks

� The oracle learns which transitions to predict for new 
configurations based on extracted features and/or 
representations for labeled configurations in the training set
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Neural Network-based Oracle

Natalie Parde - UIC CS 421 50

flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax



Neural Network-based Oracle
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flightmorningInput Buffer

Stack rootbookthe

(book → me)Relations

book me the morning flight

Encoder

Feedforward Neural Network

Softmax

Shift



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Graph-
based 
Dependency 
Parsing

• Search through the space of possible 
dependency trees, attempting to 
maximize a score based on individual 
subtrees within the overall tree

• Edge-factored approaches determine 
scores based on the scores of the 
edges that comprise the tree

• overall_score(t) = ∑!∈# 𝑠𝑐𝑜𝑟𝑒(𝑒)
• Letting t be a tree for a given 

sentence, and e be its edges
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Why use 
graph-based 
methods for 
dependency 
parsing?

• Since transition-based methods are 
greedy, they can be fooled by local 
optima

• Because of this, they tend to have high 
accuracy for shorter dependency relations 
but lower accuracy as the distance between 
words increases

• Graph-based methods score entire 
trees, thereby avoiding that issue

Natalie Parde - UIC CS 421
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Maximum Spanning Tree

• Given an input sentence, construct a fully-connected, weighted, 
directed graph

• Vertices are input words
• Directed edges represent all possible head-dependent 

assignments
• Weights reflect the scores for each possible head-dependent 

assignment, predicted by a supervised machine learning model
• A maximum spanning tree represents the preferred dependency 

parse for the sentence, as determined by the weights
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Maximum Spanning Tree: 
Example

root book

that

flight

4
4

12 5

6

5

7

8

7
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Maximum Spanning Tree: 
Example

root book

that

flight

4
4

12 5

6

5

7

8

7
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Two things to keep in 
mind….

� Every vertex in a spanning tree has exactly 
one incoming edge

� Absolute values of the edge scores are not 
critical

� Relative weights of the edges entering a vertex 
are what matter!

root book

that

flight

4
4

12 5

6

5

7
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How do we 
know that we 
have a 
maximum 
spanning tree?

� Given a fully-connected graph G = (V, E), a subgraph 
T = (V, F) is a spanning tree if:

� It has no cycles
� Each vertex (except the root) has exactly one 

edge entering it

� If the greedy selection process produces a 
spanning tree, then that tree is the maximum 
spanning tree

� However, the greedy selection process may select 
edges that result in cycles, which can be addressed 
by:

� Collapsing cycles into new nodes, with edges 
that previously entered or exited the cycle now 
entering or exiting the new node

� Recursively applying the greedy selection 
process to the updated graph until a 
(maximum) spanning tree is found
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Formal Algorithm
F ← []

T ← []

score’ ← []

for each v in V do:

 bestInEdge ← argmax
!"($,&)∈)

𝑠𝑐𝑜𝑟𝑒[𝑒]

 F ← F ∪ bestInEdge

 for each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 do:

  score’[e] ← score[e] - score[bestInEdge]

 if T=(V,F) is a spanning tree:

  return T

 else:

  C ← a cycle in F

  G’ ← collapse(G, C)

  T’ ← maxspanningtree(G’, root, score’) # Recursively call the current function

  T ← expand(T’, C)

  return T
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example

root book
12

that
7

flight
8

-4
-3

0 -2

-6

-7

-1

0

0

Natalie Parde - UIC CS 421 66



Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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Maximum Spanning Tree: 
Updated Example
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How do we train our model to 
predict edge weights?

• Similar approach to training the oracle in a transition-based parser
• Feature-based edge scoring models might predict weights based on:

• Words, lemmas, parts of speech
• Corresponding features from contexts before and after words
• Word embeddings
• Dependency relation type
• Dependency relation direction
• Distance from head to dependent

• We can also use neural networks for this process
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Why do we need 
meaning 
representations?

� Somehow, we need to bridge the gap between 
linguistic input and world knowledge to 
perform semantic processing tasks such as:

� Answering essay questions on exams

� Deciding what to order at a restaurant

� Detecting sarcasm

� Following recipes

� Goal: Represent commonsense world 
knowledge in logical form
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Sample Meaning Representations
I have a pumpkin.

∃𝑥, 𝑦	Having 𝑥 ∧ 	Haver 𝑥, 𝑆𝑝𝑒𝑎𝑘𝑒𝑟 ∧ HadThing 𝑥, 𝑦 ∧ Pumpkin 𝑦 Having

Haver Had-Thing

Speaker Pumpkin

Having
  Haver:  Speaker
  HadThing: Pumpkin
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Symbols

• Correspond to objects, properties of 
objects, and relations among objects

• Symbols link linguistic input (words) to 
meaning (world knowledge)
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Having
  Haver:  Speaker
  HadThing: Pumpkin



Meaning 
representations 

should be….



Verifiability
• Computational systems can verify the truth of a 

meaning representation for a sentence by 
matching it with knowledge base 
representations

• Knowledge Base: A source of information about the 
world

• Example proposition: Giordano’s serves deep 
dish pizza.

• We can represent this as: Serves(Giordano’s, 
DeepDishPizza)

• To verify the truth of this proposition, we would:
• Search a knowledge base containing facts about 

restaurants
• If we found a fact matching this, we have verified the 

proposition
• If not, we must assume that the fact is incorrect or, at 

best, our knowledge base is incomplete

Serves(Giordano’s, DeepDishPizza)

Serves(Two Shades, Coffee)

Serves(City Winery, Wine)

Verified!
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Unambiguous 
Representations
• Ambiguity does not stop at syntax!
• Semantic ambiguities are everywhere:

• Sarcasm
• Idiom
• Metaphor
• Hyperbole

• To resolve semantic ambiguities, computational methods 
must select which from a set of possible interpretations is 
most correct, given the circumstances surrounding the 
linguistic input

Let’s eat somewhere near SEO.

Let’s eat somewhere near SEO.

Let’s devour some building near SEO!

Let’s eat at a restaurant near SEO!
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Vagueness
I want to eat dessert.

Cake?

Cookies?

Ice cream?
Pie?



Canonical Form

• Sentences are ambiguous when they could reasonably be assigned 
multiple meaning representations

• However, multiple sentences could also be assigned the same 
meaning representation

• Giordano’s serves deep dish pizza.
• They have deep dish pizza at Giordano’s.
• Deep dish pizza is served at Giordano’s.
• You can eat deep dish pizza at Giordano’s.
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Inference and Variables

• It’s impossible for a knowledge base to 
comprehensively cover all facts about the world, 
so computational systems also need to be able 
to draw commonsense inferences based on 
meaning representations

• Will people who like deep dish pizza want 
to eat at Giordano’s?

• We don’t have a fact explicitly specifying 
that they do, but we can infer that if they 
like deep dish pizza, they will probably 
like a restaurant that serves it
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Inference 
and 
Variables

• Inference: A system’s ability to draw valid 
conclusions based on the meaning 
representations of inputs and its store of 
background knowledge

• Variables allow you to build propositions 
without requiring a specific instance of 
something

• Serves(x, DeepDishPizza)
• These propositions can only be successfully 

matched by known instances from a 
knowledge base that would resolve in a 
truthful entire proposition

• Serves(x, DeepDishPizza)
• Serves(Giordano’s, DeepDishPizza) 🙂
• Serves(IDOF, DeepDishPizza) 🤨
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Expressiveness

� Expressive power: The breadth of ideas 
that can be represented in a language

� Meaning representations must be 
expressive enough to handle a wide 
range of subject matter
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Summary: 
Dependency 
Parsing
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• Dependency parsing is the process of 
automatically determining directed 
relationships between words in a 
source sentence

• Numerous dependency tagsets exist, but 
currently the most common tagset is the 
set of universal dependencies

• Dependency parsers can be transition-
based or graph-based

• A popular transition-based method is the 
arc standard approach

• A popular graph-based method is the 
maximum spanning tree approach

• Both make use of supervised machine 
learning to aid the decision-making 
process



This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Model-Theoretic Semantics

Natalie Parde - UIC CS 421

All meaning 
representation 
schemes share an 
ability to represent 
objects, properties of 
objects, and relations 
among objects

A model is a formal 
construct that stands 
for a particular state of 
affairs in the world that 
we’re trying to 
represent

Expressions (words or 
phrases) in the 
meaning representation 
language can be 
mapped to elements of 
the model
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Relevant 
Terminology

� Vocabulary

� Non-Logical Vocabulary: Open-ended sets of names 
for objects, properties, and relations in the world we’re 
representing

� Logical Vocabulary: Closed set of symbols, operators, 
quantifiers, and links that provide the formal means for 
composing expressions in the language

� Domain: The set of objects that are part of the state of 
affairs being represented in the model

� For a given domain, objects are elements
� grapes, violets, plums, CS421, Abari, Meghan

� Properties are sets of elements corresponding to a 
specific characteristic

� purple = {grapes, violets, plums}
� Relations are sets of tuples, each of which contain 

domain elements that take part in a specific relation
� TAFor = {(CS421, Abari), (CS421, Meghan)}

� Each object in the non-logical vocabulary corresponds 
to a unique element in the domain; however, each 
element in the domain does not need to be mentioned in a 
meaning representation
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• We create mappings from non-logical 
vocabulary to formal denotations using 
functions or interpretations

• Assume that we have:
• A collection of restaurant patrons and 

restaurants
• Various facts regarding the likes and 

dislikes of patrons
• Various facts about the restaurants

• In our current state of affairs (our model) 
we’re concerned with four patrons 
designated by the non-logical symbols 
(elements) Natalie, Devika, Nikolaos, 
and Mina

• We’ll use the constants a, b, c, and d to 
refer to those respective elements
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Example 
Application • We’re also concerned with three restaurants 

designated by the non-logical symbols 
Giordano’s, IDOF, and Artopolis

• We’ll use the constants e, f, and g to refer to 
those respective elements

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}
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Example 
Application • Finally, we’ll assume that our model deals with 

three cuisines in general, designated by the 
non-logical symbols Italian, Mediterranean, and 
Greek

• We’ll use the constants i, j, and k to refer to 
those elements

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}
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Example 
Application

• Now, let’s assume we need to represent a few 
properties of restaurants:

• Fast denotes the subset of restaurants that are known 
to make food quickly

• TableService denotes the subset of restaurants for 
which a waiter will come to your table to take your 
order

• We also need to represent a few relations:
• Like denotes the tuples indicating which restaurants 

individual patrons like
• Serve denotes the tuples indicating which restaurants 

serve specific cuisines

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}
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Example 
Application

• This means that we have created the domain 
D = {a, b, c, d, e, f, g, i, j, k}

• We can evaluate representations like Natalie 
likes IDOF or Giordano’s serves Greek by 
mapping the objects in the meaning 
representations to their corresponding 
domain elements, and any links to the 
appropriate relations in the model

• Natalie likes IDOF → a likes f → Like(a, f) 🙂
• Giordano’s serves Greek → e serves k → Serve(e, k) 🤨

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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Example 
Application

• Thus, we’re just using sets and operations 
on sets to ground the expressions in our 
meaning representations

• What about more complex sentences?
• Nikolaos likes Giordano’s and Devika likes Artopolis.
• Mina likes fast restaurants.
• Not everybody likes IDOF.

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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Example 
Application • Plausible meaning representations for the 

previous examples will not map directly to 
individual entities, properties, or relations!

• They involve:
• Conjunctions
• Equality
• Variables
• Negations

• What we need are truth-conditional 
semantics

• This is where first-order logic is useful

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



First-Order 
Logic
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Common across all types of terms:

Each one can be thought of as a way of pointing to a specific 
object

Term: First-order logic device for representing objects

Constants Functions Variables

A meaning representation language (a way to 
represent knowledge in a way that is computationally 

verifiable and supports semantic inference)



First-Order 
Logic

• Constants: Specific objects in the world being described
• Conventionally depicted as single capitalized letters (A, B) 

or words (Natalie, Devika)
• Refer to exactly one object, although objects can have 

more than one constant that refers to them
• Functions: Concepts that are syntactically equivalent to 

single-argument predicates
• Can refer to specific objects without having to associate a 

named constant with them, e.g., LocationOf(Giordano’s)
• Variables: Provide the ability to make assertions and draw 

inferences without having to refer to a specific named object
• Conventionally depicted as single lowercase letters

• Predicates: Symbols that refer to the relations between a fixed 
number of objects in the domain

• Can have one or more arguments
• Serve(Giordano’s, Italian)

• Relates two objects
• Restaurant(Giordano’s)

• Asserts a property of a single object

• Predicates can be put 
together using logical 
connectives

• and ∧
• or ∨
• implies →

• They can also be 
negated

• not ¬
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Variables 
and 
Quantifiers

• Two basic operators in first-order logic are:
• ∃: The existential quantifier

• Pronounced “there exists”
• ∀: The universal quantifier

• Pronounced “for all”
• These two operators make it possible to 

represent many more sentences!
• a restaurant → ∃x Restaurant(x)
• all restaurants → ∀x Restaurant(x)
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We can combine these operators with other basic elements of 
first-order logic to build logical representations of complex 
sentences.

• Nikolaos likes Giordano’s and Devika 
likes Artopolis.

• Like(Nikolaos, Giordano’s) ∧ 
Like(Devika, Artopolis)

• Mina likes fast restaurants.
• ∀x Fast(x) → Like(Mina, x)

• Not everybody likes IDOF.
• ∃x Person(x) ∧	¬Like(x, IDOF)
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P Q ¬P P∧Q P∨Q P→Q
False False True False False True

False True True False True True

True False False False True False

True True False True True True



Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.
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Example: Is the following sentence 
valid according to our model?

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Natalie Parde - UIC CS 421

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)
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Example: Is the following sentence 
valid according to our model?

patron = {Natalie, Devika, 
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF, 
Artopolis} = {e, f, g}

cuisines = {Italian, 
Mediterranean, Greek} = {i, j, k}

Fast = {f}
TableService = {e, g}
Likes = {(a, e), (a, f), (a, g), (b, g), 
(c, e), (d, f)}
Serve = {(e, i), (f, j), (g, k)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(Natalie, Giordano’s) ∧ Likes(Devika, Giordano’s)

Likes(a, e) ∧ Likes(b, e)

False …not valid!
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A few additional 
notes….

� Formulas involving ∃ are true if there is any 
substitution of terms for variables that results 
in a formula that is true according to the 
model

� Formulas involving ∀ are true only if all 
substitutions of terms for variables result in 
formulas that are true according to the model

� Modus ponens: If a conditional statement is 
accepted (if p then q), and the antecedent (p) 
holds, then the consequent (q) may be 
inferred

� More formally:
𝛼
𝑎 ⇒ 𝛽
𝛽
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that 
Artopolis is a Greek restaurant) ✔
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Example: Inference

GreekRestaurant 𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠
∀𝑥	GreekRestaurant(𝑥) ⇒ Serves(𝑥, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

Serves(𝐴𝑟𝑡𝑜𝑝𝑜𝑙𝑖𝑠, 𝐺𝑟𝑒𝑒𝑘𝐹𝑜𝑜𝑑)

conditional statement accepted ✔

antecedent holds (our model says that 
Artopolis is a Greek restaurant) ✔

consequent may be inferred 🙂
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Events can be particularly challenging to 
represent in formal logic!

• You may need to:
• Determine the correct number of roles for the event
• Represent facts about different roles associated with the event
• Ensure that all correct (and only correct) inferences can be derived 

directly from the event representation
• Some events may theoretically take a variable number of 

arguments
• Natalie drinks.
• Natalie drinks tea.

• However, predicates in first-order logic have fixed arity (they 
accept a fixed number of arguments)

• Can be solved by creating different versions of the same predicate, 
developing meaning postulates, or allowing “missing” arguments (e.g., 
“∃x Drink(Natalie, x)”)
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States: Conditions or 
properties that remain 
unchanged over some 

period of time

Events: Indicate 
changes in some state 

of affairs



Instead of regular variables, we can 
add event variables.

• Event variable: An argument to the event representation that allows for additional 
assertions to be included if needed

• ∃e Drink(Natalie, e)
• If we determine that the actor must drink something specific: ∃e Drink(Natalie, e) ∧ 

Beverage(e, tea)
• More generally, we could define the representation:

• ∃e Drink(e) ∧ Drinker(e, Natalie) ∧ Beverage(e, tea)
• With this change, there is no need to specify a fixed number of arguments for a 

given surface predicate
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Description Logics

� How to add increased structure to semantics defined by models?

� Description Logics: DiXerent logical approaches that correspond to subsets of first-order logic

� More specific constraints make it possible to model more specific forms of inference

� Represent knowledge about:

� Categories

� Individuals who belong to those categories

� Relationships that can hold among those individuals

� Terminology: The set of categories comprising a given application domain

� Ontology: Hierarchical representation of subset/superset relations among categories
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Representation
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Restaurant(x) = Restaurant Restaurant(Giordano’s) = 
Restaurant(Giordano’s)

First-order logic Description logics
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Hierarchical 
Structure

• Can be directly specified 
using subsumption relations 
between concepts

• Subsumption: All members 
of category C are also 
members of category D, or 
𝐶 ⊑ 𝐷

• Relations allow us to 
explicitly define necessary 
and sufficient conditions for 
categories

• Italian	Restaurant	 ⊑
Restaurant	 ⊓
∃hasCuisine.ItalianCuisine

• Greek	Restaurant	 ⊑
Restaurant	 ⊓
∃hasCuisine.GreekCuisine

Natalie Parde - UIC CS 421

Commercial 
Establishment

Restaurant

Italian 
Restaurant

Greek 
Restaurant

Mediterranean 
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant
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Category Membership

� Coverage or disjointness can be further specified using logical operators

� Italian	Restaurant	 ⊑ NOT	Greek	Restaurant
�Restaurant	 ⊑
𝐎𝐑	(Italian	Restaurant, Greek	Restaurant,Mediterranean	Restaurant)

� Relations provide further information about category membership

� Italian	Cuisine	 ⊑ Cuisine
� Italian	Restaurant	 ⊑ Restaurant	 ⊓ ∃hasCuisine.ItalianCuisine	=	
∀𝑥ItalianRestaurant(𝑥) ⟶ Restaurant(𝑥) ∧ (∃𝑦Serves(𝑥, 𝑦) ∧ ItalianCuisine(𝑦))
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Inference Commercial 
Establishment

Restaurant

Italian 
Restaurant

Greek 
Restaurant

Mediterranean 
Restaurant

Restaurant
⊑ Commercial	
Establishment

Italian	Restaurant
⊑ Restaurant

Med.	Restaurant
⊑ Restaurant

Greek	Restaurant
⊑ Restaurant
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Real-World Example of Description Logics

• Web Ontology Language (OWL)
• Formally specifies semantic categories of 

the internet through the creation and 
deployment of ontologies for application 
areas of interest

• Built using a description logic similar to that 
described in the previous slides
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Semantic Roles

� When extracting information from text, it is 
useful to understand semantic roles, or 
how participants relate to events

� Who did what?

� When?

� Where?

� There are many possible semantic roles, 
and they are often application- or domain-
specific

CS 421 - Natalie Parde
120



Recall the meaning representations 
we’ve already seen….
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Natalie baked the cake.

∃𝑒, 𝑥, 𝑦	Baking(𝑒) ∧ Baker(𝑒, Natalie) ∧ BakedThing(𝑒, 𝑦) ∧ Cake(𝑦)



Recall the meaning representations 
we’ve already seen….
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Natalie baked the cake.

∃𝑒, 𝑥, 𝑦	Baking(𝑒) ∧ Baker(𝑒, Natalie) ∧ BakedThing(𝑒, 𝑦) ∧ Cake(𝑦)

• Subject of “bake”
• Deep role specific 

to the “baking” 
event



What if we consider another 
sentence?
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Natalie ate the cake.

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Eater(𝑒, Natalie) ∧ EatenThing(𝑒, 𝑦) ∧ Cake(𝑦)

• Subject of “ate”
• Deep role specific 

to the “eating” 
event



There are 
commonalities 
between these 
roles!

� “Bakers” and “Eaters” are both:

� Volitional actors

� Generally animate

� Have causal responsibility for their events

� Semantic roles (sometimes referred to as thematic roles) are how we 
capture these commonalities more formally
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∃", $, %	Baking(") ∧ Baker(", Natalie) ∧ BakedThing(", %) ∧ Cake(%)

∃", $, %	Eating(") ∧ Eater(", Natalie) ∧ EatenThing(", %) ∧ Cake(%)Agent

Theme



Semantic roles are ancient!

• First formalized by Pāṇini sometime between 700-400 BCE
• More recently formalized in the 1960s

• Fillmore (1968): https://files.eric.ed.gov/fulltext/ED019631.pdf
• Gruber (1965): http://www.ai.mit.edu/projects/dm/theses/gruber65.pdf

• No universally agreed-upon roles, but some are common across numerous papers
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Common 
Semantic 
Roles
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THEMATIC 
ROLE

DEFINITION EXAMPLE

Agent The volitional causer of an event The waiter spilled the soup.

Experiencer The experiencer of an event John has a headache.

Force The non-volitional causer of the event The wind blows debris from the mall into 
our yards.

Theme The participant most directly affected by an 
event

Only after Benjamin Franklin broke the 
ice….

Result The end product of an event The city built a regulation-size baseball 
diamond….

Content The proposition or content of a propositional 
event

Mona asked, “You met Mary Ann at the 
supermarket?”

Instrument An instrument used in an event He poached catfish, stunning them with a 
shocking device….

Beneficiary The beneficiary of an event Whenever Ann Callahan makes hotel 
reservations for her boss….

Source The origin of the object of a transfer event I flew in from Boston.

Goal The destination of an object of a transfer 
event

I drove to Portland.

126

Some sets of semantic 
roles are finer-grained, 
whereas others are 
broader and more abstract



Semantic roles 
offer another way 
for us to 
construct shallow 
meaning 
representations.

127
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In general, semantic roles help us 
generalize over different surface 

realizations of the same predicate 
arguments

They allow us to:

Make inferences that aren’t 
possible from surface 

representations or parse trees

Create intermediate 
languages for downstream 

tasks



For example….
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Natalie baked the cake.

Natalie baked the cake in the oven.

The oven baked the cake.

The cake baked.

The cake was baked by Natalie.

Agent

Theme

Instrument



Thematic Grid

� The set of semantic role arguments taken by a verb

� Also sometimes referred to as a case frame

� Semantic roles can often be realized in different 
syntactic positions

� For example:

� Agent=Subject; Theme=Object

� Instrument=Subject; Theme=Object

� Theme=Subject

� Diathesis Alternations: Alternate acceptable 
structural realizations for arguments, facilitating 
generalization over different surface realizations

� Different verbs can participate in different 
alternations

Natalie baked the cake.

Natalie baked the cake in the oven.

The oven baked the cake.

The cake baked.

The cake was baked by Natalie.

Agent

Theme

Instrument
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Defining Role 
Sets
• Researchers often find it 

necessary to fragment more 
general roles (e.g., Agent) into 
more specific roles
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Instrument

Intermediary: Can 
appear as subjects

Enabling: Cannot 
appear as subjects



Conformity to Predefined 
Properties

• Individual noun phrases may not conform to all properties of an 
Agent, but they might conform to most …can they still be labeled 
with this role?

• Might require even more fragmentation!
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How can 
these 
challenges 
be 
addressed?

• Generalized semantic 
roles

• Proto-Agents
• Proto-Patients
• Fewer, more abstract 

roles
• Semantic roles tailored 

to specific semantic 
classes

• Additional, more 
specific roles 132
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VerbNet
• An online resource indicating the semantic classes to which many English 

verbs belong
• Linked to WordNet and FrameNet entries
• Link: https://verbs.colorado.edu/verbnet/

• Also an API: https://github.com/cu-clear/verbnet/
• Also accessible via NLTK: 

https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html
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VerbNet
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Semantic Roles

Generalized Semantic Roles
� Abstract over specific thematic roles

� Roles are defined by heuristic features that 
accompany properties likely to correspond 
with the generalized class

� Proto-Agent: Agent-like properties

� More overlapping properties → argument 
likelier to be labeled with that role

Specialized Semantic Roles
� Define roles that are specific to a 

particular verb or a group of semantically 
related verbs or nouns

� A Cook creates a Produced_food from 
(raw) Ingredients.

� The Heating_instrument and/or 
the Container may also be specified.
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What are some popular resources for semantic role labeling?
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• https://propbank.github.io/
• Both generalized and verb-specific roles

PropBank

• https://framenet.icsi.berkeley.edu/fndrupal/
• Semantic roles that are specific to general ideas or frames

FrameNet

https://propbank.github.io/
https://framenet.icsi.berkeley.edu/fndrupal/


PropBank

• Proposition Bank
• Available in numerous languages

• English
• Hindi
• Chinese
• Arabic
• Finnish
• Portuguese
• Basque
• Turkish
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PropBank

� Provides semantic roles 
associated with diXerent verb 
senses

� Senses are given numbered 
arguments as roles
� Arg0
� Arg1
� …
� ArgN

� PropBank entries:
� Referred to as frame files
� Definitions for each role are 

informal glosses
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agree.01
• Arg0: Agreer
• Arg1: Proposition
• Arg2: Other entity agreeing

• Ex1: [Arg0 The group] agreed 
[Arg1 it wouldn’t make an 
offer].

• Ex2: [ArgM-TMP Usually] [Arg0 
John] agrees [Arg2 with Mary] 
[Arg1 on everything].

fall.01
• Arg1: Logical subject, patient, thing 

falling
• Arg2: Extent, amount fallen
• Arg3: start point
• Arg4: end point, end state of arg1

• Ex1: [Arg1 Sales] fell [Arg4 to $25 
million] [Arg3 from $27 million].

• [Arg1 The average junk bond] fell 
[Arg2 by 4.2%].



PropBank 
can be 
useful 
for….

• Recovering shallow semantic information
• Inferring commonality in event structures 

for varying surface forms
• Representing modification or adjunct 

meanings
• Denoted using non-numbered arguments 

called ArgMs
• ArgMs aren’t listed in individual frame 

files since they’re generalizable across 
predicates
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Common 
Modifier 
Arguments

CS 421 - Natalie Parde 140

ArgM Description Example
TMP When? Yesterday evening, now

LOC Where? At the museum, in Chicago

DIR Where to/from? Down, to Chicago

MNR How? Clearly, with much enthusiasm

PRP/CAU Why? Because, in response to the 
ruling



PropBank
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Check out 
PropBank!

� Link:
� https://propbank.github.io/

� Paper:

� Paul Kingsbury and Martha Palmer. From 
Treebank to PropBank. 2002. 
In Proceedings of the 3rd International 
Conference on Language Resources and 
Evaluation (LREC-2002), Las Palmas, 
Spain.

� PropBank is focused on verbs, but a related 
project also annotates nominal predicates 
with the same types of semantic roles:

� NomBank: 
https://nlp.cs.nyu.edu/meyers/NomBan
k.html
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Making 
inferences about 

semantic 
commonalities is 

useful….

• Even more useful: Making 
inferences across different 
verbs, or between verbs and 
nouns

• Potentially applicable to more 
situations

CS 421 - Natalie Parde
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FrameNet • Semantic role labeling 
project where roles are 
specific to frames rather 
than individual verbs

• Frame: A set of 
background information 
that unites a group of 
words

CS 421 - Natalie Parde

[Arg1 The price of yarn] increased [Arg2 

500%].

[Arg1 The price of yarn] rose [Arg2 500%].

There has been a [Arg2 500%] rise in 

[Arg1 the price of yarn].

=

144



Frames
• Background knowledge structures that define:

• Specific frame elements associated with a given topic
• Predicates that use these frame elements

• Frame element: A frame-specific semantic role
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Frames

� Each word within a sentence or clause is understood to 
evoke a frame, and participate in that frame in some 
way

� FrameNet includes:

� Manually specified frames and frame elements

� Example sentences
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• Frame-specific 
elements

Core roles

• More general elements
• Time, location, etc.

• Similar to the ArgM 
arguments in PropBank

Non-core roles



Example Sentences

CS 421 - Natalie Parde 147

[ITEM Oil] rose [ATTRIBUTE in price] [DIFFERENCE by 2%].

[ITEM It] has increased [FINAL STATE to having them 1 day a month].

[ITEM Microsoft shares] fell [FINAL VALUE to 7 5/8].

[ITEM Colon cancer incidence] fell [DIFFERENCE by 50%] [GROUP among men].

a steady increase [INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM in dividends]

a [DIFFERENCE 5%] [ITEM dividend] increase...

Frame: change_position_on_a_scale



FrameNet

� Frame relationships (i.e., inheritance or causation) allow us to 
understand common event semantics across verbal and nominal 
causative and non-causative uses

� FrameNet databases have been developed for a variety of languages 

� Link:

� https://framenet.icsi.berkeley.edu/fndrupal/

� Manual:
� Josef Ruppenhofer, Michael Ellsworth, Miriam R. L Petruck, 

Christopher R. Johnson, Collin F. Baker, Jan ScheXczyk: 
FrameNet II: Extended Theory and Practice (Revised November 1, 
2016.): https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf

CS 421 - Natalie Parde 148

https://framenet.icsi.berkeley.edu/fndrupal/
https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf


This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Semantic 
Role 
Labeling

• Semantic role labeling: Automatically 
assigning semantic roles to predicate 
arguments

• Often solved using supervised machine 
learning methods
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The University of Illinois Chicago offered free flu shots.
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How are 
roles 
defined?

• Depends on the resource!
• Often, FrameNet and/or PropBank are 

used to:
• Specify predicates
• Define roles
• Provide training and test data

CS 421 - Natalie Parde
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Numerous 
approaches 
have been used 
to perform 
semantic role 
labeling.

� Feature-based algorithms:
� Parse the input string
� Traverse the parse to find predicates
� Decide the semantic role (if any) of each 

node in the parse tree with respect to each 
predicate

� Feature-based algorithms employ standard 
supervised machine learning algorithms and a 
wide variety of feature representations

� Many approaches also perform a second pass 
to address global consistency using the 
Viterbi algorithm or reranking approaches
� Constituents in FrameNet and PropBank 

cannot overlap
� PropBank does not allow multiple 

arguments of the same type
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Features for 
Semantic Role 
Labeling

� Common features:

� Governing predicate

� Constituent type

� Head word of the constituent

� Part of speech of the head word

� Path in the parse tree from the constituent to the 
predicate

� Whether the voice of the surrounding clause is active or 
passive

� Whether the constituent appears before or after the 
predicate

� Set of expected arguments for the verb phrase

� Named entity type of the constituent

� First and last word(s) of the constituent
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Modern SRL is also often performed 
using neural models.



Neural Semantic Role Labeling

CS 421 - Natalie Parde

t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings
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Neural Semantic Role Labeling
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t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings

Left-to-right LSTM

Right-to-left LSTM

Concatenation
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Neural Semantic Role Labeling

CS 421 - Natalie Parde

t0 t1 t2 t4

The 0 cats 0 love 1 hats 0Word + IsPredicate

Embeddings

Left-to-right LSTM

Right-to-left LSTM

Concatenation

Feedforward + Softmax

B-Arg0 I-Arg0 B-Pred B-Arg1
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Evaluating 
Semantic 
Role 
Labelers

C
S 

42
1 

- N
at

al
ie

 P
ar

de

• True positives: Argument labels 
assigned to the correct word 
sequence or parse constituents

• Then, we can compute our standard 
NLP metrics:

• Precision
• Recall
• F-measure
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This 
Week’s 
Topics
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Tuesday

Dependency Structure
Transition-Based 
Dependency Parsing
Graph-Based Dependency 
Parsing
Meaning Representations

Thursday

Model-Theoretic Semantics
First-Order Logic
Semantic Roles
Semantic Role Labeling
Selectional Preferences



Relationships 
between 
predicates and 
arguments can 
also be defined 
in other ways.

� Sometimes, there are conceptual or 
semantic limitations on which words can 
act as arguments to predicates

� We refer to these as selectional 
restrictions
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Let’s eat somewhere 
near SEO.

Let’s devour some building near SEO!



What are 
selectional 

restrictions?

• Selectional restrictions: Semantic constraints 
placed upon predicates, governing the types of 
concepts that can fill those predicates’ semantic 
roles

Let’s eat somewhere 
near SEO.

Let’s eat at a restaurant 
near SEO!
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Let’s eat cake!



Selectional 
Restrictions

� Associated with senses, not words 
themselves

� Vary in their specificity
� To eat: THEME should be edible

� To sip: THEME should be edible and liquid

� The set of concepts needed for representing 
selectional restrictions is open-ended
� Being a liquid

� Being edible

� …
� This makes selectional restrictions diberent 

from other ways to represent lexical 
knowledge

� For example, parts of speech are finite 
and limited
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One way to 
represent 
selectional 
restrictions….

• Extend the logical representations we’ve 
already seen

• Use the same components we’ve used 
for representing events

• Event variable
• Predicate denoting event
• Variables and relations for event roles
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Representing Selectional 
Restrictions
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∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Agent(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦)

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Agent(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦) ∧ EdibleThing(𝑦)

∃𝑒, 𝑥, 𝑦	Eating(𝑒) ∧ Eater(𝑒, 𝑥) ∧ Theme(𝑒, 𝑦) ∧ EdibleThing(𝑦) ∧ Pizza(𝑦)

164



Selectional Preferences
• Selectional restrictions → hard constraints
• Selectional preferences → soft constraints
• Many systems tend to use selectional preferences rather than 

selectional restrictions
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She was way faster than everyone else …the other runners ate her dust.

Spit that out, you can’t eat plastic!
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Selectional 
Preference

• Selectional preferences, SP(v), are defined as 
the difference between two distributions:

• Distribution of the expected semantic 
classes, P(c)

• Distribution of the expected semantic 
classes for a specific verb, P(c|v)

• This difference can be quantified using 
Kullback-Leibler (KL) divergence, D(P||Q):

• 𝐷(𝑃| 𝑄 = ∑Q 𝑃(𝑥) log
R(Q)
U(Q)

• 𝑆R 𝑣 = 𝐷(𝑃(𝑐|𝑣)||𝑃(𝑐)) 	= ∑V 𝑃(𝑐|𝑣) log
R(V|X)
R(V)

• Selectional association then indicates how 
much a given class contributes to a verb’s 
overall selectional preference

• 𝐴! 𝑣, 𝑐 = "
#Y $

𝑃(𝑐|𝑣) log %('|$)
%(')

CS 421 - Natalie Parde
166



Selectional 
Preference 

via 
Conditional 
Probability



How do we 
evaluate the 
quality of 
calculated 
selectional 
preferences?
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Pseudoword task

• Determine which of two words are more 
preferred by a given verb, and compute how 
often the selectional preference model 
makes the correct choice

Human selectional preference 
scores
• Check correlation between human 

selectional preference scores and those 
predicted by the model



Summary: 
Model-Theoretic 
Semantics and 
Semantic Role 
Labeling

� In model-theoretic semantics, the model serves as a formal 
construct representing a particular state of aXairs in the world

� First-order logic maps linguistic input to world knowledge 
using logical rules

� First-order logic makes use of both existential and universal 
quantifiers

� Description logic models semantic domains using subsets of 
first-order logic, restricting expressiveness such that it 
guarantees the tractability of certain kinds of inference

� Semantic roles define argument roles with respect to a 
predicate

� PropBank and FrameNet also define various general and 
specific semantic role types

� Semantic role labeling is the task of automatically assigning 
semantic roles to words or spans of words in a specific context

� Selectional restrictions are hard constraints placed upon the 
semantic properties of arguments

� Selectional preferences are soft constraints placed on those 
properties, and can have varying selectional association 
strength
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