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What is semantic parsing?

The process of extracting semantic structure or meaning from natural language input
What are the semantic dependencies present in the language sample?
How do elements in the language sample relate to one another logically?

What semantic roles are filled in the language sample?
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Most popular
semantic

parsing task:
dependency
parsing

Natalie Parde - UIC CS 421

O Automatically determining directed
grammatical and semantic relationships
between words

O Semantic: Focused on meaning

O This information is useful for many NLP
applications, including:

O Coreference resolution
O Question answering

O Information extraction



How are dependency grammars different from CFGs?

"\

O CFGs generate constituent-based representations
O Noun phrases, verb phrases, etc.

O These tell us about the syntactic structure

O Dependency grammars define sentence structure in terms of the semantic relationships
between individual words

O Nominal subject, direct object, etc.

O For both, labels are still drawn from a fixed inventory of grammatical relations

.
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Dependency
grammars are
especially
helpful for
interpreting

with a
relatively

Morphologically rich: Grammatical
relationships are indicated by changes to
words, rather than sentence position

Free word order: Words can be moved
around in a sentence but the overall
meaning will remain the same (less
reliance on syntax)

Typically, languages that are
morphologically richer have less strict

syntactic rules
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Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations
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e e |
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Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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Typed Dependency Structure

dobj nmod

root

the morning flight through DEJEE
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Comparison with Syntactic Parse

nmod

dobj

morning through

DEETS

morning

through
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Dependency Relations

* Heads are linked to the words that are immediately dependent on them
» Relation types describe the dependent’s role with respect to its head

» Subject

* Direct object

* Indirect object
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Dependency Relations

» Relation types tend to correlate with sentence position and constituent type in
English, but there is not an explicit connection between these elements

* In languages with relatively free word order, the information encoded in these
relation types often cannot be estimated from constituency trees
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Just like with
CFGs, there
are a variety
of taxonomies
that can be
used to label
dependencies
between
words.

A couple of the most popular dependency
treebanks and tagsets include:

» Stanford dependencies

 https://downloads.cs.stanford.edu/nlp/so
ftware/dependencies manual.pdf

» Universal dependencies
* https://universaldependencies.org/
* Most popular tagset recently!
» Dependencies can be categorized as:

» Clausal Relations: Describe
syntactic roles that say something
about the predicate

* Modifier Relations: Describe the
ways that words can modify their
heads



https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://universaldependencies.org/

Clausal Relations

dobj

root
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Modifier Relations

dobj

root
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals __|___ Clauses | Modifier Words | Function Words

Core Arguments nsubj csubj
of Clausal obj ccomp
Predicates iobj xcomp
Non-Core obl AUX
Dependents of vocative advmod
advcl : cop
Clausal expl discourse mark
Predicates dislocated
Dependents of et S
. appos acl amod clf
Nominals
nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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https://universaldependencies.org/u/dep/index.html

Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

gfo g—'i-aﬁrsgatllments nigjpj \ Natalie wrote a dissertation.
bj te, Natali
Predicates iobj “s“,\JSYYT,? ¢, Natalie)
Non-Core obl : : : AUX
Dependents of vocative Najtalle wrote_ a dlsse_rtatlon. d
Clausal expl obj(wrote, dissertation) Irse rﬁgfk
Predicates dislocated
D dents of nmod Natalie wrote UIC a dissertation. det
ependents o appos iobj(wrote, UIC) olf

Nominals '

nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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https://universaldependencies.org/u/dep/index.html

Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

gfo giaﬁrsgatllments ”ig}” Natalie wrote a dissertation for UIC.
bl te, UIC

Predicates iobj / ° (,\ly,-g.ﬁ’ )
Non-Core obl _ _
Dependents of vocative +— ! UIC, read my dissertation! mod aux
Clausal expl vocative(read, UIC) urse cop
Predicates dislocat;\ mark
D dents of nmod There is nothing but praise for the dissertation. |et
N?)Ir)neirr:a?sn S0 appos expl(nothing, there) bIf

nummod case

You must not eat it, the dissertation.
dislocated(eat, dissertation)

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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https://universaldependencies.org/u/dep/index.html

Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses___| Modifier Words | Function Words

Core Arguments nsubj [ The purpose of this dissertation is to determine the best
of Clausal obj homework strategy.
Predicates iobj nmod(purpose, dissertation)
Non-Core obl - :
Dependents of vocative My school, UIC, is in Chicago. aux
appos(school, UIC) R cop
Clausal expl Pb = mark
Predicates dislocate
D dents of nmod UIC has 34,000 students. det
epe-_n ents o appos nummod(students, 34,000) clf

Nominals

nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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https://universaldependencies.org/u/dep/index.html

Functional categories w.r.t. head

Universal Dependencies

Core Arguments
of Clausal
Predicates

Non-Core
Dependents of
Clausal
Predicates

Dependents of
Nominals

Structural categories of dependent

___Nominals | __ Clauses___| Modifier Words | Function Words

nsubj
obj
iobj
obl
vocative
expl
dislocated

nmod
appos
nummod

csubj '\‘ What she said about starting the project

ccomp makes sense.
xcomp csubj(makes, said)
: : aux_
advcl She said you should start it now.
ccomp(said, start)
det

acl | consider it already done.

xcomp(consider, done)

\v

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

Core Arguments nsubyj csubj | He was upset when she read her
of Clausal obj ccomp dissertation to him.
Predicates iobj xcomp advcl(upset, read)
Non-Core obl aux
Dependents of vocative advmod
advcl : cop
Clausal expl discourse mark
Predicates dislocated
Dependents of nmod det
. appos acl amod clf
Nominals
nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

Core Arguments nsubj csubj
of Clausal obj ccomp
Predicates iobj xcomp
Non-Core obl There is a document discussing the
Dependents of vocative dvel assignment.
Clausal expl adve acl(document, discussing)
Predicates dislocated S
Dependents of LISt Ll

. appos acl amod clf
Nominals

nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent
___ Nominals | Clauses | Modifier Words | Function Words

UIC quickly emailed the students about the

Core Arguments

of Clausal day off
Riedicates advmod(emailed, quickly) \
Non-Core obl AUX
Dependents of vocative advel advmod o
Clausal expl discourse ma?k
Predicates dislocated /

: det
Dependents of She said, “Well, let’s schedule a meeting.” amod cIf
Nominals discourse(schedule, well) case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

Core Arguments nsubj csubj
of Clausal obj ccomp
Predicates iobi Xcomn
Non-Core He read the extensive syllabus.
Dependents of amod(syllabus, extensive) advimod aux
aavel : cop
Clausal expl discourse mark
Predicates dislocated
Dependents of LISt efsi
. appos acl amod clf
Nominals
nummod case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __Clauses __| Modifier Words | Function Words
ool

Core Arguments ok

of Clausal UIC had closed the campus for the break.

Predicates aux(closed, had)

Don-bore ob It was good to have some time off aux

Dependents of vocative '

Clausal expl cop(good, was) —— cop

Predicates dislocated mark

Dependents of They knew that this would refresh everyone for the spring. det

Nominals mark(refresh, that) clf
iiou case

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Functional categories w.r.t. head

Universal Dependencies

Structural categories of dependent

___Nominals | __ Clauses | Modifier Words | Function Words

Core Arguments nsubj csubj
of Clausal obj ccomp That was the goal.
Predicates iobj xcomp det(goal, the)
N EIHEETE A word that accompanies a noun to aux
Dependents of P
reflect some conceptual classification cop

SlEUEE] of the noun (not used in English) mark
Predicates dislaaicu
Dependents of Ll o det
Nominal appos = amad clf

il numm4 Everyone went on vacation after that. —» case

case(that, after)

Other miscellaneous dependency relations (see https://universaldependencies.org/u/dep/index.html for details):
conj, cc, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, punct, root, dep
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Dependency
Formalisms

Dependency structures are directed graphs

e G=(V,A)
¢ Vertices (V) correspond to the words in a sentence
¢ May also include punctuation

¢ In morphologically rich languages, may include stems
and affixes

¢ Arcs (A) are ordered pairs of vertices that capture the
grammatical relationships between those words

In general, dependency structures:

e Must be connected
¢ Must have a designated root node with no incoming arcs
e Must be acyclic

Additional Notes

¢ All vertices except the root node have exactly one
incoming arc

¢ There is a unique path from the root node to each vertex

Natalie Parde - UIC CS 421
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Dependency Structure
*Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

Thursday

e e |
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Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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Types of Dependency Parsers

Transition-based
1Ne=lpislielal -« Build a single tree in a beginning-to-end sweep over the input sentence

Graph-based

» Search through the space of possible trees for a given sentence, and try
to find the tree that maximizes some score

Natalie Parde - UIC CS 421
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Transition-based Dependency
Parsing

 Earliest transition-based approach: shift- . —_—
reduce parsing

* Input tokens are successively shifted
onto a stack

» The two top elements of the stack are
matched against a set of possible
relations provided by some @

Oracle

knowledge source

 When a match is found, a head-
dependent relation between the
matched elements is asserted

Input Buffer

» Goal is to find a final parse that accounts Stack
for all words
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Transition-
based

» We can define transition operators to
guide the parser’s decisions

« Transition operators work by producing
new configurations:
« Stack
* Input buffer of words

 Set of relations representing a
dependency tree

30
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Transition-
based

Parsing

== [nitial configuration:

» Stack contains the ROOT node

* Input buffer is initialized with all
words in the sentence, in order

« Empty set of relations represents
the parse

mm Final configuration:

» Stack should be empty (except
ROOQOT)

* Input buffer should be empty

» Set of relations represents the
parse

Natalie Parde - UIC CS 421
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Operators

» The operators used in transition-based parsing then perform one of
the following tasks:

» Assign the current word as the head of some other word that
has already been seen

« Assign some other word that has already been seen as the
head of the current word

* Do nothing with the current word

Natalie Parde - UIC CS 421
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» More formally, these operators are defined as:

« LeftArc: Asserts a head-dependent relation between the
word at the top of the stack and the word directly beneath
it (the second word), and removes the second word from
the stack

» Cannot be applied when ROOT is the second element
in the stack

0 pe I'atO rS * Requires two elements on the stack

* RightArc: Asserts a head-dependent relation between the
second word and the word at the top of the stack, and
removes the word at the top of the stack

* Requires two elements on the stack

 Shift: Removes a word from the front of the input buffer
and pushes it onto the stack

Natalie Parde - UIC CS 421 33



Arc Standard
Approach to

Transition-
based Parsing

Natalie Parde - UIC CS 421

O These operators implement the arc standard
approach to transition-based parsing

O Notable characteristics:

O Transition operators only assert relations
between elements at the top of the stack

O Once an element has been assigned its
head, itis removed from the stack

O Not available for further processing!

O The arc standard approach is a greedy
algorithm

O Benefits:
O Reasonably effective

O Simple to implement

34



Formal Algorithm: Arc Standard
Approach

state « {[root], [words], []}
while state not final:
# Choose which transition operator to apply

transition « oracle(state)

# Apply the operator and create a new state

state « apply(transition, state)

Process ends when:
* All words in the sentence have been consumed
 The ROOT node is the only element remaining on the stack

Natalie Parde - UIC CS 421
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Arc Standard: Example
LMY= book | me | the | morning | flight |

Stack

Relations




Arc Standard: Example
Input Buffer -mmmm Only one item in the stack!

Shift book from the input
Stack buffer to the stack

Relations




Arc Standard: Example
Input Buffer --mmm Valid options: Shift, RightArc

Oracle selects Shift
Stack

Shift me from the input
buffer to the stack

Relations




Arc Standard: Example
Input Buffer --mmm Valid options: Shift,

RightArc, LeftArc
Stack Oracle selects RightArc

Remove me from the stack

Add relation (book — me) to
the set of relations

Relations (book — me)




Arc Standard: Example
Input Buffer ---mm Valid options: Shift, RightArc

Oracle selects Shift
Stack

Shift the from the input
buffer to the stack

Relations (book — me)




Arc Standard: Example
Input Buffer ----m Valid options: Shift,

RightArc, LeftArc

Stack Oracle selects Shift

Shift morning from the input
buffer to the stack

Relations (book — me)




Arc Standard: Example
Input Buffer ----- Valid options: Shift,

RightArc, LeftArc

Stack Oracle selects Shift

Shift flight from the input
buffer to the stack

Relations (book — me)




Arc Standard: Example
Input Buffer ----- Valid options: RightArc,

LeftArc

Stack Oracle selects LeftArc

Remove morning from the
stack

Add relation (flight —
morning) to the set of

(book — me) relations
(flight — morning)

Relations




Arc Standard: Example
Input Buffer ----- Valid options: RightArc,

LeftArc
Stack Oracle selects LeftArc

Remove the from the stack

Add relation (flight — the) to
the set of relations

(book — me)
Relations (flight - morning)
(flight — the)




Arc Standard: Example
Input Buffer ----- Valid options: RightArc,

LeftArc
Stack Oracle selects RightArc

Remove flight from the
stack

Add relation (book — flight)
(book — me) to the set of relations
(flight — morning)
(flight — the)
(book — flight)

Relations




Arc Standard: Example
Input Buffer ----- Valid options: RightArc

Oracle selects RightArc

Stack
Remove book from the
stack

Add relation (root — book)
to the set of relations

(book — me)
(flight — morning)
Relations (flight — the)
(book — flight)
(root — book)




Arc Standard: Example
Input Buffer ----- Valid options: None

State is final

Stack

(book — me)
(flight — morning)
Relations (flight — the)
(book — flight)
(root — book)




How do we get actual
dependency labels?

» Parameterize LeftArc and RightArc
 LeftArc(nsubj), RightArc(obj), etc.

» Of course, this makes the oracle’s job more
difficult (much larger set of operators from
which to choose!)

* Incorrect choices by the oracle lead to incorrect
parses since the algorithm cannot perform any
backtracking

* However, alternate sequences may also lead to
equally valid parses

Natalie Parde - UIC CS 421

iobj(book — me)
compound(flight — morning)
det(flight — the)
obj(book — flight)
root(root — book)

48




task

4 N\
\ / & O Generally, systems use supervised machine learning for this

O Logistic regression

- - O Support vector machines

ﬁ O Neural networks
% O The oracle learns which transitions to predict for new
\ configurations based on extracted features and/or
representations for labeled configurations in the training set

How does the oracle know what to choose?

Natalie Parde - UIC CS 421




Neural Network-based Oracle

UENC | || moing lfiight

Stack

Relations (book — me)




Neural Network-based Oracle

UENC | || moing lfiight

Stack

Relations (book — me)

ENEEE EEEEE EEEEE EEEEE EEEEE
t t t 1 t

book me the morning flight
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Neural Network-based Oracle

Input Buffer ---@

Relations (book — me)

HEEEE EEEEE i

Encoder

book me the morning flight

Natalie Parde - UIC CS 421 52



Neural Network-based Oracle

Input Buffer

Stack

Relations

||| morning lflight

(book — me)

EEEEE
t

Feedforward Neural Network

(lllllll{’llllll]

ll?ll IITII ll?ll li?ll IITII

book me the morning flight
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Neural Network-based Oracle

Input Buffer

Stack

Relations

||| morning lflight

(book — me)

Shift

EEEEE
t

Feedforward Neural Network

(lllllll{’llllll]

ll?ll IITII ll?ll li?ll IITII

book me the morning flight
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Dependency Structure
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Dependency Parsing

Graph-Based Dependency
Parsing
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Thursday

e e |
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Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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Graph-
based

Dependency
Parsing

« Search through the space of possible
dependency trees, attempting to
maximize a score based on individual
subtrees within the overall tree

- Edge-factored approaches determine
scores based on the scores of the
edges that comprise the tree

 overall_score(t) = ), .¢; score(e)

* Letting t be a tree for a given
sentence, and e be its edges
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Why use * Since transition-based methods are

dy, th be fooled by local
graph-based DSy e e iselzel ) b

* Because of this, they tend to have high

..... methOds fo Y accuracy for shorter dependency relations

""" but lower accuracy as the distance between

dependencv words increases

» Graph-based methods score entire

pa I'Si ng? trees, thereby avoiding that issue




Maximum Spanning Tree

» Given an input sentence, construct a fully-connected, weighted,
directed graph

 Vertices are input words

* Directed edges represent all possible head-dependent
assignments

« Weights reflect the scores for each possible head-dependent
assignment, predicted by a supervised machine learning model

« A maximum spanning tree represents the preferred dependency
parse for the sentence, as determined by the weights
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Maximum Spanning Tree:
Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Example

Natalie Parde - UIC CS 421
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Two things to keep in
mind....

Every vertex in a spanning tree has exactly
one incoming edge

Absolute values of the edge scores are not
critical

Relative weights of the edges entering a vertex
are what matter!
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How do we
know that we

have a
maximum
spanning tree?

Natalie Parde - UIC CS 421

O Given a fully-connected graph G = (V, E), a subgraph
T=(V, F)is a spanning tree if:

O Ithasnocycles

O Each vertex (except the root) has exactly one
edge entering it

O Ifthe greedy selection process produces a
spanning tree, then that tree is the maximum
spanning tree

O However, the greedy selection process may select
edges that result in cycles, which can be addressed
by:

O Collapsing cycles into new nodes, with edges
that previously entered or exited the cycle now

entering or exiting the new node

O Recursively applying the greedy selection
process to the updated graph until a
(maximum) spanning tree is found
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Formal Algorithm

F o« []

T « []

score’ « []

for each v in V do:

bestInEdge ~ argmax scorele]
e=(u,v)EE

F « F U bestInEdge

for each e= (u,v) EE do:

score’ [e] « scorel[e] - scorel[bestInEdge]

if T=(V,F) 1is a spanning tree:
return T
elses
C « a cycle in F
G’ < collapse (G, C)
T’ — maxspanningtree (G’, root, score’)
T — expand(T’, C)

return T

# Recursively call the current function

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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Maximum Spanning Tree:
Updated Example

Natalie Parde - UIC CS 421
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How do we train our model to
predict edge weights?

 Similar approach to training the oracle in a transition-based parser

» Feature-based edge scoring models might predict weights based on:
» Words, lemmas, parts of speech
» Corresponding features from contexts before and after words
» Word embeddings
* Dependency relation type
« Dependency relation direction
 Distance from head to dependent

» \We can also use neural networks for this process



Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency

Parsing
%Aeaning Representations

Thursday

e e |
Tuesday |

Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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Why do we need
meaning

representations?

Natalie Parde - UIC CS 421

Somehow, we need to bridge the gap between
linguistic input and world knowledge to
perform semantic processing tasks such as:

Answering essay questions on exams
Deciding what to order at a restaurant
Detecting sarcasm

Following recipes

Goal: Represent commonsense world
knowledge in logical form




Sample Meaning Representations

| have a pumpkin.

Jx,y Having(x) A Haver(x, Speaker) A HadThing(x, y) A Pumpkin(y)

Having
Haver: Speaker
HadThing: Pumpkin

Natalie Parde - UIC CS 421

Having

Haver

Had-Thing
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» Correspond to objects, properties of
objects, and relations among objects

« Symbols link linguistic input (words) to
meaning (world knowledge)

Having
Haver: Speaker
HadThing: Pumpkin

Natalie Parde - UIC CS 421



Meaning

representations
should be....

Verifiable

Unambiguous

Able to map to a canonical form
Supportive of inference and variables
Expressive

7
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Verifiability

« Computational systems can verify the truth of a
meaning representation for a sentence by
matching it with knowledge base
representations

+ Knowledge Base: A source of information about the
world

« Example proposition:
« We can represent this as:

« To verify the truth of this proposition, we would:

» Search a knowledge base containing facts about
restaurants

) . » |If we found a fact matching this, we have verified the
Serves(City Winery, Wine) proposition

* If not, we must assume that the fact is incorrect or, at
best, our knowledge base is incomplete




Unambiguous
Let’s eat somewhere near SEO. -
— Representations

A

»

\ * Ambiguity does not stop at syntax!

‘:\,‘_ « Semantic ambiguities are everywhere:
« Sarcasm
* |diom
* Metaphor

Let’'s eat somewhere near SEO. » Hyperbole
* To resolve semantic ambiguities, computational methods

must select which from a set of possible interpretations is
most correct, given the circumstances surrounding the

linguistic input

Let’s devour some building near SEO!

F——

Let’'s eat at a restaurant near SEO!
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Vagueness carerd s, ae ™ pier |

| want to eat dessert.

 Closely related to ambiguity

» However, vagueness does not give rise to multiple
representations

* In fact, it is advantageous for meaning
representations to maintain a certain level of
vagueness

» Otherwise, you may be “overfitting” to your set
of example sentences
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Canonical Form

« Sentences are ambiguous when they could reasonably be assigned
multiple meaning representations

 However, multiple sentences could also be assigned the same
meaning representation
« Giordano’s serves deep dish pizza.
» They have deep dish pizza at Giordano’s.
» Deep dish pizza is served at Giordano’s.
* You can eat deep dish pizza at Giordano’s.
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Inference and Variables

* It's impossible for a knowledge base to
comprehensively cover all facts about the world,
so computational systems also need to be able
to draw commonsense inferences based on
meaning representations

» Will people who like deep dish pizza want
to eat at Giordano’s?

+ We don’t have a fact explicitly specifying
that they do, but we can infer that if they
like deep dish pizza, they will probably
like a restaurant that serves it
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* Inference: A system’s ability to draw valid
conclusions based on the meaning
representations of inputs and its store of
background knowledge

 Variables allow you to build propositions

I “fe rence without requiring a specific instance of

something
a“d - Serves(x, DeepDishPizza)

* These propositions can only be successfully

va ri a b I es matched by known instances from a

knowledge base that would resolve in a
truthful entire proposition

» Serves(x, DeepDishPizza)
» Serves(Giordano’s, DeepDishPizza)
» Serves(IDOF, DeepDishPizza) =



Expressiveness

W / Expressive power: The breadth of ideas
( that can be represented in a language

Meaning representations must be
expressive enough to handle a wide
range of subject matter
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Summary:
Dependency
Parsing

Dependency parsing is the process of
automatically determining directed
relationships between words in a
source sentence

Numerous dependency tagsets exist, but
currently the most common tagset is the
set of universal dependencies

Dependency parsers can be transition-
based or graph-based

A popular transition-based method is the
arc standard approach

A popular graph-based method is the
maximum spanning tree approach

Both make use of supervised machine
learning to aid the decision-making
process



Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

\/ Thursday

Tuesday

Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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Model-Theoretic Semantics

All meaning
representation
schemes share an
ability to represent
objects, properties of
objects, and relations
among objects

A model is a formal
construct that stands
for a particular state of
affairs in the world that
we’re trying to
represent

Natalie Parde - UIC CS 421

Expressions (words or
phrases) in the

meaning representation
language can be
mapped to elements of
the model
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O Vocabulary

O Non-Logical Vocabulary: Open-ended sets of names
for objects, properties, and relations in the world we’re

representing

O Logical Vocabulary: Closed set of symbols, operators,
quantifiers, and links that provide the formal means for
composing expressions in the language

O Domain: The set of objects that are part of the state of
affairs being represented in the model

O For a given domain, objects are elements

Relevant

O grapes, violets, plums, CS421, Abari, Meghan

Te rm i no '.0 O Properties are sets of elements corresponding to a
gy specific characteristic

O purple ={grapes, violets, plums}

O Relations are sets of tuples, each of which contain
domain elements that take part in a specific relation

O TAFor = {(CS421, Abari), (CS421, Meghan)}

O Each object in the non-logical vocabulary corresponds
to a unique element in the domain; however, each

element in the domain does not need to be mentioned in a

meaning representation
Natalie Parde - UIC CS 421 88




» We create mappings from non-logical
vocabulary to formal denotations using
functions or interpretations

 Assume that we have:

A collection of restaurant patrons and
restaurants

* Various facts regarding the likes and
- dislikes of patrons
Fu nCtlons » Various facts about the restaurants

* In our current state of affairs (our model)
we’re concerned with four patrons
designated by the non-logical symbols
(elements) Natalie, Devika, Nikolaos,
and Mina

« We’'ll use the constants a, b, ¢, and d to
refer to those respective elements
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Example
Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

* \WWe’re also concerned with three restaurants

designated by the non-logical symbols
Giordano’s, IDOF, and Artopolis

« We’'ll use the constants e, f, and g to refer to
those respective elements

Natalie Parde - UIC CS 421
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Example
Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

* Finally, we'll assume that our model deals with
three cuisines in general, designated by the

non-logical symbols /talian, Mediterranean, and

Greek

» We'll use the constants /, j, and k to refer to
those elements

Natalie Parde - UIC CS 421
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Example
Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

* Now, let’'s assume we need to represent a few
properties of restaurants:

* Fast denotes the subset of restaurants that are known
to make food quickly

» TableService denotes the subset of restaurants for
which a waiter will come to your table to take your
order

» \We also need to represent a few relations:

» Like denotes the tuples indicating which restaurants
individual patrons like

» Serve denotes the tuples indicating which restaurants
serve specific cuisines

Natalie Parde - UIC CS 421 92



Example
Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

ﬁast = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, g), (b, 9),
(c, e), (d, )}

| Serve ={(e, i), (£, ]), (9, k)}

 This means that we have created the domain
D={a,b,c,d, e fqglijk}

* We can evaluate representations like Natalie
likes IDOF or Giordano’s serves Greek by
mapping the objects in the meaning
representations to their corresponding
domain elements, and any links to the
appropriate relations in the model

* Natalie likes IDOF — a likes f — Like(a, f) &
« Giordano’s serves Greek — e serves k — Serve(e, k) &
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Example
Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

ﬁast = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, g), (b, 9),
(c, e), (d, )}

| Serve = {(e, i), (f. ), (g, k)}

« Thus, we're just using sets and operations
on sets to ground the expressions in our
meaning representations

« What about more complex sentences?

» Nikolaos likes Giordano’s and Devika likes Artopolis.

* Mina likes fast restaurants.
* Not everybody likes IDOF.

Natalie Parde - UIC CS 421
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Example

Application

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

ﬁast = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, g), (b, 9),
(c, e), (d, )}

| Serve = {(e, i), (f. ), (g, k)}

 Plausible meaning representations for the
previous examples will not map directly to
individual entities, properties, or relations!

* They involve:
« Conjunctions
« Equality
 Variables
* Negations

 \What we need are truth-conditional
semantics

* This is where first-order logic is useful

Natalie Parde - UIC CS 421
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Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

Thursday

e e |
Tuesday |

Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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First-Order
Logic

A meaning representation language (a way to
represent knowledge in a way that is computationally
verifiable and supports semantic inference)

Term: First-order logic device for representing objects

Constants Functions Variables

Common across all types of terms:

Each one can be thought of as a way of pointing to a specific
object
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Constants: Specific objects in the world being described

» Conventionally depicted as single capitalized letters (A, B)
or words (Natalie, Devika)

» Refer to exactly one object, although objects can have
more than one constant that refers to them

Fll’St-order Functions: Concepts that are syntactically equivalent to
Logic single-argument predicates
» Can refer to specific objects without having to associate a
named constant with them, e.g., LocationOf(Giordano’s)

Variables: Provide the ability to make assertions and draw
inferences without having to refer to a specific named object

» Conventionally depicted as single lowercase letters

* Predicat b t . . .
together using logical Predicates: Symbols that refer to the relations between a fixed

connectives number of objects in the domain
" oandA « Can have one or more arguments
) ic;;;/"esﬁ « Serve(Giordano’s, Italian)
+ They can also be * Relates tV\{O objects
negated » Restaurant(Giordano’s)
* not— » Asserts a property of a single object
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« Two basic operators in first-order logic are:
 3: The existential quantifier

= * Pronounced “there exists”
va rlables * V: The universal quantifier
and « Pronounced “for all”
=g » These two operators make it possible to
Quantlflers represent many more sentences!

* arestaurant — 3x Restaurant(x)
« all restaurants — vx Restaurant(x)



We can combine these operators with other basic elements of

first-order logic to build logical representations of complex
sentences.

* Nikolaos likes Giordano’s and Devika
likes Artopolis.

» Like(Nikolaos, Giordano’s) A
Like(Devika, Artopolis)
* Mina likes fast restaurants.
» Vx Fast(x) — Like(Mina, x)
* Not everybody likes IDOF. True
« 3x Person(x) A —Like(x, IDOF) True

False

False

Natalie Parde - UIC CS 421
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True

False

True

True

True

False

False

P_a | P P JP-a_

False False True
False True True
False True False
True True True
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Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie likes Giordano’s and Devika likes Giordano’s.

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

East = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, 9), (b, 9),
(c, e), (d, )}

| Serve = {(e, i), (f. ), (g, k)}
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Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie likes Giordano’s and Devika likes Giordano’s.

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

East = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, 9), (b, 9),
(c, e), (d, )}

| Serve ={(e, i), (£, ]). (9, K)}

Natalie Parde - UIC CS 421 102



Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie likes Giordano’s and Devika likes Giordano’s.

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,

Mediterranean, Greek} = {i, j, k} e

East = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, 9), (b, 9),
(c, e), (d, )}

| Serve ={(e, i), (£, ]). (9, K)}
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Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie likes Giordano’s and Devika likes Giordano’s.

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,

Mediterranean, Greek} = {i, j, k} e

[ Fast = () @

TableService = {e, g}
Likes = {(a, e), (a, ), (a, g), (b, @), [*—
(c, e), (d, )}

| Serve ={(e, i), (£, ]). (9, K)}
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Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

Natalie likes Giordano’s and Devika likes Giordano’s.

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,

Mediterranean, Greek} = {i, j, k} e

[ Fast = () @

TableService = {e, g}
Likes = {(a, e), (a, ), (a, g), (b, @), [*—
(c, e), (d, )}

| Serve ={(e, i), (£, ]). (9, K)}

4
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Example: Is the following sentence
valid according to our model?

patron = {Natalie, Devika,
Nikolaos, Mina} = {a, b, c, d}

restaurants = {Giordano’s, IDOF,
Artopolis} = {e, f, g}

cuisines = {ltalian,
Mediterranean, Greek} = {i, j, k}

East = {f}

TableService = {e, g}

Likes = {(a, e), (a, f), (a, 9), (b, 9),
(c, e), (d, )}

| Serve ={(e, i), (£, ]). (9, K)}

Natalie likes Giordano’s and Devika likes Giordano’s.

Likes(a, e) A Likes(b, e)

4

False ...not valid!
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O Formulas involving = are true if there is any
substitution of terms for variables that results
in a formula that is true according to the
model

O Formulas involving v are true only if all
substitutions of terms for variables result in

A feW add itional formulas that are true according to the model

O Modus ponens: If a conditional statement is
nOteS. coe accepted (if p then q), and the antecedent (p)
holds, then the consequent (q) may be
inferred

O More formally:
a

a=f

B
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Example: Inference

GreekRestaurant(Artopolis)
Vx GreekRestaurant(x) = Serves(x, GreekFood)

Serves(Artopolis, GreekFood)

conditional statement accepted vV
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Example: Inference

antecedent holds (our model says that

K- Artopolis is a Greek restaurant) v/

GreekRestaurant(Artopolis)
Vx GreekRestaurant(x) = Serves(x, GreekFood)

Serves(Artopolis, GreekFood)

conditional statement accepted vV
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Example: Inference

antecedent holds (our model says that

K- Artopolis is a Greek restaurant) v/

GreekRestaurant(Artopolis)
Vx GreekRestaurant(x) = Serves(x, GreekFood)

Serves(Artopolis, GreekFood)

conditional statement accepted vV consequent may be inferred &
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Events can be particularly challenging to

represent in formal logic!

* You may need to:
» Determine the correct number of roles for the event
» Represent facts about different roles associated with the event

» Ensure that all correct (and only correct) inferences can be derived
directly from the event representation

« Some events may theoretically take a variable number of
arguments

* Natalie drinks.
» Natalie drinks tea.
* However, predicates in first-order logic have fixed arity (they
accept a fixed number of arguments

+ Can be solved by creating different versions of the same predicate,
developln%lmeanln ostulates, or allowing “missing” arguments (e.g.,
“Ix Drink(Natalie, x%?

Natalie Parde - UIC CS 421

States: Conditions or

properties that remain

unchanged over some
period of time

Events: Indicate
changes in some state
of affairs




Instead of regular variables, we can

add event variables.

« Event variable: An argument to the event representation that allows for additional
assertions to be included if needed

» Je Drink(Natalie, €)

« If we determine that the actor must drink something specific: 3e Drink(Natalie, €) A
Beverage(e, tea)

» More generally, we could define the representation:
» Je Drink(e) A Drinker(e, Natalie) A Beverage(e, tea)

» With this change, there is no need to specify a fixed number of arguments for a
given surface predicate
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Description Logics

"\

O How to add increased structure to semantics defined by models?
O Description Logics: Different logical approaches that correspond to subsets of first-order logic
O More specific constraints make it possible to model more specific forms of inference
O Represent knowledge about:
O Categories
O Individuals who belong to those categories
O Relationships that can hold among those individuals
O Terminology: The set of categories comprising a given application domain

O Ontology: Hierarchical representation of subset/superset relations among categories

\. J
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Representation

Restaurant(Giordano’s) =
Restaurant(x) = Restaurant Restauran(t(Giordano’g)

/
| -

First-order logic , @ription Iogiﬁ)
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Hierarchical
Structure

» Can be directly specified
using subsumption relations
between concepts

» Subsumption: All members
of category C are also
members of category D, or
CCD

» Relations allow us to
explicitly define necessar
and sufticient conditions for
categories

e Jtalian Restaurant C
Restaurant I
JhasCuisine.ltalianCuisine

* Greek Restaurant C
Restaurant I
JhasCuisine.GreekCuisine

Natalie Parde - UIC CS 421

Commercial
Establishment

Restaurant
C Commercial
Establishment

Restaurant

Italian Restaurant Med. Restaurant
C Restaurant C Restaurant

Italian Greek Mediterranean
Restaurant Restaurant Restaurant

Greek Restaurant
C Restaurant




Category Membership

Coverage or disjointness can be further specified using logical operators
Italian Restaurant = NOT Greek Restaurant

Restaurant =
OR (Italian Restaurant, Greek Restaurant, Mediterranean Restaurant)

Relations provide further information about category membership
Italian Cuisine E Cuisine

[talian Restaurant T Restaurant M JhasCuisine.ltalianCuisine =
VxItalianRestaurant(x) — Restaurant(x) A (3yServes(x, y) A ItalianCuisine(y))
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/Commercial g

Establishment

Inference

« Subsumption as a form of inference = Commercial

Establishment
» Based on the facts in our terminology, does a
superset/subset relationship exist between two
conce ptS7 [talian Restaurant

C Restaurant

/ Italian /Mediterranean

A
=

Restaurant

Med. Restaurant
C Restaurant

\Restaurant Restaurant Restaurant

Greek Restaurant
C Restaurant
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Real-World Example of Description Logics

 Web Ontology Language (OWL)

» Formally specifies semantic categories of
the internet through the creation and
deployment of ontologies for application
areas of interest

* Built using a description logic similar to that
described in the previous slides
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Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

Thursday

e e |
Tuesday |

Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences

Natalie Parde - UIC CS 421 119



Semantic Roles

CS 421 - Natalie Parde

O When extracting information from text, it is
useful to understand semantic roles, or
how participants relate to events

O Who did what?
O When?
O Where?

O There are many possible semantic roles,
and they are often application- or domain-
specific

120



Recall the meaning representations
we’ve already seen....

' Natalie baked the cake.

CS 421 - Natalie Parde 121



Recall the meaning representations
we’ve already seen....

Natalic: baked :he cake.

Subject of “bake”
Deep role specific
to the “baking”
event

CS 421 - Natalie Parde 122



What if we consider another
sentence?

' Nataliz ate the cake.

« Subject of “ate”
» Deep role specific
to the “eating”

event

de, x,y Eating(e) A Eater(e, Natalie) A EatenThing(e, y) A Cake(y)

CS 421 - Natalie Parde 123



O “Bakers” and “Eaters” are both:
O Volitional actors

O Generally animate

There are O Have causal responsibility for their events

A O Semantic roles (sometimes referred to as thematic roles) are how we
commona lItIeS capture these commonalities more formally

between these
roles!

Je, x, y Baking(e)

J
-
Agent — = ~ Je, x, y Eating(e) A Eater(e, Natalie))A EatenThing(e, y, A Cake(y)

CS 421 - Natalie Parde 1 24




Semantic roles are ancient!

* First formalized by Panini sometime between 700-400 BCE

* More recently formalized in the 1960s
* Fillmore (1968): https://files.eric.ed.gov/fulltext/ED019631.pdf
» Gruber (1965): http://www.ai.mit.edu/projects/dm/theses/gruber65.pdf

* No universally agreed-upon roles, but some are common across numerous papers


https://files.eric.ed.gov/fulltext/ED019631.pdf
http://www.ai.mit.edu/projects/dm/theses/gruber65.pdf

THEMATIC DEFINITION EXAMPLE
ROLE
Agent The volitional causer of an event The waiter spilled the soup.
Experiencer The experiencer of an event John has a headache.
Force The non-volitional causer of the event The wind blows debris from the mall into
our yards.
Theme The participant most directly affected by an Only after Benjamin Franklin broke the
event ice....
Result The end product of an event The city built a regulation-size baseball
diamond....
Content The proposition or content of a propositional Mona asked, “You met Mary Ann at the
event supermarket?”
Instrument An instrument used in an event He poached catfish, stunning them with a
shocking device....
Beneficiary The beneficiary of an event Whenever Ann Callahan makes hotel
reservations for her boss....
Source The origin of the object of a transfer event | flew in from Boston.
Goal The destination of an object of a transfer | drove to Portland.

event

CS 421 - Natalie Parde

Common
Semantic

Roles

Some sets of semantic
roles are finer-grained,
whereas others are
broader and more abstract




They allow us to:

Semantic roles

offer another wa
for us to y Make inferences that aren’t Create intermediate

possible from surface languages for downstream
const_r uct shallow representations or parse trees tasks
meaning

representations.

In general, semantic roles help us

generalize over different surface
127 realizations of the same predicate
arguments
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For example....

R N

- \
aked the cake \\
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Thematic Grid - N

The set of semantic role arguments taken by a verb

Also sometimes referred to as a case frame B

|~ 8
Semantic roles can often be realized in different \  Agent |

syntactic positions

For example:

Agent=Subject; Theme=0Object

Instrument=Subject; Theme=0bject

Theme=Subject

Diathesis Alternations: Alternate acceptable
structural realizations for arguments, facilitating
generalization over different surface realizations

Different verbs can participate in different
alternations

CS 421 - Natalie Parde 1 29




Defining Role
Sets

« Researchers often find it
necessary to fragment more
general roles (e.g., Agent) into
more specific roles

Intermediary: Can
appear as subjects

Enabling: Cannot
appear as subjects
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Conformity to Predefined

Properties

* Individual noun phrases may not conform to all properties of an
Agent, but they might conform to most ...can they still be labeled
with this role?

* Might require even more fragmentation!
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 Generalized semantic

roles

How can » Proto-Agents
* Proto-Patients

these * Fewer, more abstract
challenges roles
be - Semantic roles tailored

to specific semantic
addressed? classes

« Additional, more
specific roles
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VerbNet

« An online resource indicating the semantic classes to which many English
verbs belong

* Linked to WordNet and FrameNet entries

* Link: https://verbs.colorado.edu/verbnet/
* Also an API: https://github.com/cu-clear/verbnet/

» Also accessible via NLTK:
https://www.nltk.org/ modules/nltk/corpus/reader/verbnet.html



https://verbs.colorado.edu/verbnet/
https://github.com/cu-clear/verbnet/
https://www.nltk.org/_modules/nltk/corpus/reader/verbnet.html

CREATE-26.4 IRy ack to sea

Full Class View
Member Verb Lemmas:
create-26.4
create-26.4-1 AUTHOR COIN COMPUTE CONCOCT CONSTRUCT CONTRIVE COWRITE CREATE
create-26.4-1-1

DERIVE FABRICATE FORM FORMULATE LAY MANUFACTURE MASS-PRODUCE
MODEL ORGANIZE PRODUCE PUBLISH REARRANGE REBUILD RECONSTITUTE
REORGANIZE STYLE SYNTHESIZE TURN-OUT
ROLES
Agent [ +animate | +machine |
Result
Material
Beneficiary [ +animate |
Attribute
EXAMPLE:
NPV NP .
David constructed a house.
NP V NP PP.material SHOW DEPENDENCY PARSE TREE
NP V NP PPbeneficiary SYNTAX:

Agent VERB Result
NP V NP PPattribute

SEMANTICS:

- HAS_STATE( e1, ?Material , V_Final_State )
- BE(e1, Result)

DO(e2, Agent)

BE( e3, Result)

HAS_STATE( e3, ?Material , V_Final_State )
CAUSE(e2,e3)

FORCE DYNAMICS:

Volitional Create FD representation
Subclasses:

CREATE-26.4-1 IR
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Semantic Roles

Abstract over specific thematic roles

Roles are defined by heuristic features that
accompany properties likely to correspond
with the generalized class

Proto-Agent: Agent-like properties

More overlapping properties > argument
likelier to be labeled with that role

Define roles that are specific to a
particular verb or a group of semantically
related verbs or nouns

A Cook creates a Produced food from
(raw) Ingredients.

The Heating_instrument and/or
the Container may also be specified.




What are some popular resources for semantic role labeling?

PropBank

e https://propbank.github.io/

e Both generalized and verb-specific roles

FrameNet

e https://framenet.icsi.berkeley.edu/fndrupal/

e Semantic roles that are specific to general ideas or frames
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https://propbank.github.io/
https://framenet.icsi.berkeley.edu/fndrupal/

PropBank

* Proposition Bank

* Available in numerous languages
English
Hindi
Chinese
Arabic
Finnish
Portuguese
Basque
Turkish
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PropBank

O Provides semantic roles
associated with different verb

sSenses
O Serses aro gven numbered
g Arg0: Agreer fall.o1
O Arg0 Arg1: Proposition _ Arg1: Logical subject, patient, thing
Arg2: Other entity agreeing falling
O Arg1 Arg2: Extent, amount fallen
o Ex1 :_[Argo The,group] agreed Arg3: start point
[Afrfcﬂ it wouldn’'t make an Arg4: end point, end state of arg1
offer].
O ArgN Ex2: [argm-Tvp Usually] [argo Ex1: [Arg1 Sales] fell [Arg4 to $25
O PropBank entries: John] agrees [xrq2 with Mary] million] [Arg3 from $27 million].
. [arg1 ON everything]. [Arg1 The average junk bond] fell
O Referred to as frame files [Arg2 by 4.2%].

O Definitions for each role are
informal glosses
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» Recovering shallow semantic information
* Inferring commonality in event structures

PrOpBank for varying surface forms
» Representing modification or adjunct
can be meanings
userI  Denoted using non-numbered arguments
called ArgMs
for---- » ArgMs aren't listed in individual frame

files since they’re generalizable across
predicates

139
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Common
Modifier
Arguments

ArgM  Description Example

TMP When? Yesterday evening, now

LOC Where? At the museum, in Chicago
DIR Where to/from?  Down, to Chicago

MNR How? Clearly, with much enthusiasm
PRP/CAU  Why? Because, in response to the

ruling
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PropBank

forecast

forecast.01 - tell the future

FORECAST-V NOTES: In the latter example there really should be a trace in objectposition, but treebank didn't put it there. (from fc
FORECAST-N NOTES: Based on sentences in nouns-9998. Comparison to forecast.01-v. No VN class.
FORECASTING-N NOTES: Based on sentences in nouns-9998. Comparison to forecast.01-v. No VN ck

cast.01-v)
ed by Katie. (from forecast.01-n)
Framed by Katie. (from forecasting 01-n)

Aliases:

forecast (v.)
forecasting (n.)
forecast (n.)

Roles:
ARGO-PAG: fortune teller

ARGI1-PPT: prediction
ARG2-PRD: secondary predication

transitive

The company forecast that fourth - quarter income from continuing operations would be ™ significantly " lower than a year earlier .

missing object

Saab 's problems were underscored Friday when the company announced that its car division had a 1.2 billion kronor ( $ 186.1 million ) loss during the first eight months of this year , slightly worse than Saab - Scania had
forecast in its first - half report last month .

args 0 and 1

its forecast for economic growth in the EC in 1989




Check out

PropBank!

CS 421 - Natalie Parde

O Link:
O https://propbank.github.io/

O Paper:

O Paul Kingsbury and Martha Palmer. From
Treebank to PropBank. 2002.
In Proceedings of the 3rd International
Conference on Language Resources and
Evaluation (LREC-2002), Las Palmas,
Spain.

O PropBank is focused on verbs, but a related
project also annotates nominal predicates
with the same types of semantic roles:

O NomBank:

https://nlp.cs.nyu.edu/meyers/NomBan
k.html
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Making
inferences abOl_It « Even more useful: Making
semantic inferences across different

commohnalities is verbs, or between verbs and

nouns

useful.... « Potentially applicable to more

situations
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FrameNet

« Semantic role labeling
project where roles are
specific to frames rather
than individual verbs

* Frame: A set of
background information
that unites a group of
words

CS 421 - Natalie Parde
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Attention

Definition:

whether or not the [JT01¢

» Background knowledge structures that define:
+ Specific frame elements associated with a given topic

Frames * Predicates that use these frame elements

* Frame element: A frame-specific semantic role

Lexical Unit Index

Rt's state of readiness to process and consider impressions of a [gTane within a Eaumy. It is often unknown to the S toSLE

Legislator tells UiSIuEE to be

This frame concerns a |Z2EINEY

n:
exists within the €I, Alternatively, the Mmay be expressed as showing signs of the [J3tasugs!'s state of attentiveness.
ALERT}to dioxin levels}

They demand an [XMVSNEUNGS TV, a careful accounting of parts.

FEs:

Core:

xpressor []]
Excludes: Perceiver

Semantic Type: Sentient
Non-Core:

Semantic Type: Degree

anner []]
Semantic Type: Manner

An entity (or event) associated with a that gives evidence for a [JStOSuLals attentiveness.
The entity that the is specifically focussing on within the [

The individual that pays attention to the [E0Tg.

The situation within which the is alert.
The amount of attention that the is paying to the [84Ground}
The sensory field or subset of a sensory field that the is attending to.

Any description of the event which is not covered by more specific FEs, including epistemic modification (probably,
presumabl steriou: { i ary effects (quietly, loudly), and general descripti aring events
A e Lo R . L coa o L

Frame-frame Relations:

Inherits from: State
Is Inherited by:
Perspective on:

Is Perspectivized in:
Uses:

Subframe of:

Has Subframe(s):
Precedes:

Is Preceded by:

Is Inchoative of:

Is Causative of:
See also:

Lexical Units:

alert.a, attend.v, attention.n, attentive.a, close.a, closely.adv, ignore.v, keep an eye.v
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Core roles

e Frame-specific
elements

Non-core roles

* More general elements
e Time, location, etc.

e Similar to the ArgM
arguments in PropBank

Each word within a sentence or clause is understood to
evoke a frame, and participate in that frame in some

way

FrameNet includes:

Manually specified frames and frame elements

Example sentences




Example Sentences

Frame: change_position_on_a_scale

RENGE PY 2%].

,/ . .
yy Oil] rose [ArTRIBUTE in price] loiFre

a Steady increase [INITIALVALUE from 9.5] [FINALVALUE to 14.3] [ITEM in dividends]

| [Item Colon cancer incidence] fell [pirrerence PY 90%] [croup @mong men]. |

I ey, dividend] increase
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O Frame relationships (i.e., inheritance or causation) allow us to
understand common event semantics across verbal and nominal
causative and non-causative uses

@)

FrameNet databases have been developed for a variety of languages
Link:

@)

O https://framenet.icsi.berkeley.edu/fndrupal/
O Manual:

O Josef Ruppenhofer, Michael Ellsworth, Miriam R. L Petruck,

Christopher R. Johnson, Collin F. Baker, Jan Scheffczyk:
Fra me N et FrameNet |I: Extended Theory and Practice (Revised November 1,

2016.): https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf
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https://framenet2.icsi.berkeley.edu/docs/r1.7/book.pdf

Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

Thursday

e e |
Tuesday |

Model-Theoretic Semantics
First-Order Logic

Semantic Roles

Semantic Role Labeling
Selectional Preferences
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« Semantic role labeling: Automatically
assigning semantic roles to predicate
arguments

 Often solved using supervised machine

semantic learning methods
... Role

La bel i “ g The University of lllinois Chicago offered free flu shots.

LTJLYJ
27

150
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How are

* Depends on the resource!

I'Oles » Often, FrameNet and/or PropBank are

defined? used to:
» Specify predicates

* Define roles
* Provide training and test data
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Numerous
approaches
have been used

to perform
semantic role

labeling.

CS 421 - Natalie Parde

O Feature-based algorithms:
O Parse the input string
O Traverse the parse to find predicates

O Decide the semantic role (if any) of each
node in the parse tree with respect to each
predicate

O Feature-based algorithms employ standard
supervised machine learning algorithms and a
wide variety of feature representations

O Many approaches also perform a second pass
to address global consistency using the
Viterbi algorithm or reranking approaches

O Constituents in FrameNet and PropBank
cannot overlap

O PropBank does not allow multiple
arguments of the same type
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Common features:
Governing predicate
Constituent type
Head word of the constituent
Part of speech of the head word

Features for

Path in the parse tree from the constituent to the
predicate

Semantic Role

Whether the voice of the surrounding clause is active or

SEESYE Labeling

Whether the constituent appears before or after the
predicate

Set of expected arguments for the verb phrase
Named entity type of the constituent

First and last word(s) of the constituent

CS 421 - Natalie Parde
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Modern SRL is also often performed
using neural models.

* Frame SRL like other sequence labeling tasks
» Given a predicate, detect and label spans with semantic roles
» Use BIO tagging for this process

» Goal: Compute the highest probability tag sequence y, given an input sequence of words w:

e ¥ = argmax P(y|w)
yET

» Global optimization can be addressed by applying Viterbi decoding directly to the softmax
output
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Neural Semantic Role Labeling

Embeddings HENEEEEEEE EEEEEEEEE EEEEEEEEE EEEEEEEEE

Word + IsPredicate The 0 cats O love 1 hats O

to t, t t,
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Neural Semantic Role Labeling

Concatenation ENEEENEEE EEEEEEEEE EEEEEEEEE EEEEEEEEE

Right-to-left LSTM

Left-to-right LSTM

Embeddings HENEEEEEEE EEEEEEEEE EIEEEEEEEE EEEEEEEEE

Word + IsPredicate The 0 cats O love 1 hats O

to t, t t,

CS 421 - Natalie Parde
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Neural Semantic Role Labeling

B-Arg0 I-Arg0 B-Pred B-Arg1

Feedforward + Softmax h h h

Concatenation HEEN

Right-to-left LSTM

Left-to-right LSTM

Embeddings HENEEEEEEE EEEEEEEEE EIEEEEEEEE EEEEEEEEE

Word + IsPredicate The 0 cats O love 1 hats O

to t, t t,

CS 421 - Natalie Parde 157




o)
B
@
o
Q2
©
3

©
Z

1

—
I
<
)]
(@)

* True positives: Argument labels

Eva I u at i n g assigned to the correct word

sequence or parse constituents

sem a nt i c * Then, we can compute our standard

NLP metrics:
RO I e * Precision

* Recall

Labelers . F-measure



Dependency Structure

Transition-Based
Dependency Parsing

Graph-Based Dependency
Parsing

Meaning Representations

Thursday

e e |
Tuesday |

Model-Theoretic Semantics
First-Order Logic
Semantic Roles

Semantic Role Labeling
*Selectional Preferences
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Relationships
between
predicates and

arguments can
also be defined
in other ways.

CS 421 - Natalie Parde

O Sometimes, there are conceptual or
semantic limitations on which words can
act as arguments to predicates

O We refer to these as selectional
restrictions

_ N
Le svevo somg building nAar SEQ!

\ \

ear 0.

Let'sleat so hare
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Semantic constraints
placed upon predicates, governing the types of
concepts that can fill those predicates’ semantic

roles
What are "N X |
selectional -o1s oot Somewhere b
restrictions?

Gs eat at a restaurant

near SEO!

'H'H‘H‘

CS 421 - Natalie Parde

Let s eat cake!
e —



Selectional

Restrictions

CS 421 - Natalie Parde

Associated with senses, not words
themselves

Vary in their specificity
O To eat: THEME should be edible
O To sip: THEME should be edible and liquid

The set of concepts needed for representing
selectional restrictions is open-ended

O Being a liquid
O Being edible
O ..

This makes selectional restrictions different
from other ways to represent lexical
knowledge

O For example, parts of speech are finite
and limited
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« Extend the logical representations we've

One way to already seen
represent

« Use the same components we've used

A for representing events
selectional  Event variable

restrictions.... - Predicate denoting event
» Variables and relations for event roles
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Representing Selectional
Restrictions

de, x,y Eating(e) A Agent(e, x) A Theme(e, y)

de, x, y Eating(e) A Agent(e, x) A Theme(e,y) A EdibleThing(y)

Jde, x, y Eating(e) A Eater(e, x) A Theme(e, y) A EdibleThing(y) A Pizza(y) @




Selectional Preferences

» Selectional restrictions — hard constraints
» Selectional preferences — soft constraints

* Many systems tend to use selectional preferences rather than
selectional restrictions

She was wa
LY
-the other r'unners ate her\'/eryc;t else
’ tic!
Sp't that out y0U can t eat p\as
‘ )

CS 421 - Natalie Parde
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» Selectional preferences, Sp(v), are defined as
the difference between two distributions:

m  Distribution of the expected semantic
SE'ECtIOnal classes, P(c)
 Distribution of the expected semantic
P I’Efe I'ence classes for a specific verb, P(c|v)
 This difference can be quantified using
Kullback-Leibler (KL) divergence, D(P||Q):

. _ £
D(PIIQ) = £ P(x) log 2

« Sp(v) = D(P(c|v)||P(c)) = X.P(c|v) 10g%

« Selectional association then indicates how
much a given class contributes to a verb’s
overall selectional preference

1 P
« Ap(v,c) = 50 P(c|v) log%lcv))



Selectional
Preference

\"/F:1
Conditional
Probability

* We can also model selection
preference strength using conditional
probability

* Probability of an argument noun n
given a predicate verb v for a
particular relation r

» Can be computed using log co-
occurrence frequency or modified
maximum likelihood estimates

C(nyr) .
. Pwln,7) = {—C(n'r) if C(n,v,7) >0

0 otherwise

167
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How do we
evaluate the
quality of

calculated
selectional
preferences?

Pseudoword task

e Determine which of two words are more
preferred by a given verb, and compute how
often the selectional preference model
makes the correct choice

Human selectional preference

scores

e Check correlation between human
selectional preference scores and those

predicted by the model
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Summary:
Model-Theoretic

Semantics and
Semantic Role
Labeling

Natalie Parde - UIC CS 421

In model-theoretic semantics, the model serves as a formal
construct representing a particular state of affairs in the world

First-order logic maps linguistic input to world knowledge
using logical rules

First-order logic makes use of both existential and universal
quantifiers

Description logic models semantic domains using subsets of
first-order logic, restricting expressiveness such that it
guarantees the tractability of certain kinds of inference

Semantic roles define argument roles with respectto a
predicate

PropBanlk and FrameNet also define various general and
specific semantic role types

Semantic role labeling is the task of automatically assigning
semantic roles to words or spans of words in a specific context

Selectional restrictions are hard constraints placed upon the
semantic properties of arguments

Selectional preferences are soft constraints placed on those
properties, and can have varying selectional association
strength
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